Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...utils.accelerate_utils import apply_forward_hook | |
| from ..modeling_outputs import AutoencoderKLOutput | |
| from ..modeling_utils import ModelMixin | |
| from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder | |
| class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin): | |
| r""" | |
| Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss | |
| for encoding images into latents and decoding latent representations into images. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| Parameters: | |
| in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
| out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
| Tuple of downsample block types. | |
| down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
| Tuple of down block output channels. | |
| layers_per_down_block (`int`, *optional*, defaults to `1`): | |
| Number layers for down block. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| Tuple of upsample block types. | |
| up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
| Tuple of up block output channels. | |
| layers_per_up_block (`int`, *optional*, defaults to `1`): | |
| Number layers for up block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. | |
| sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
| norm_num_groups (`int`, *optional*, defaults to `32`): | |
| Number of groups to use for the first normalization layer in ResNet blocks. | |
| scaling_factor (`float`, *optional*, defaults to 0.18215): | |
| The component-wise standard deviation of the trained latent space computed using the first batch of the | |
| training set. This is used to scale the latent space to have unit variance when training the diffusion | |
| model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
| diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
| / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
| Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), | |
| down_block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_down_block: int = 1, | |
| up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
| up_block_out_channels: Tuple[int, ...] = (64,), | |
| layers_per_up_block: int = 1, | |
| act_fn: str = "silu", | |
| latent_channels: int = 4, | |
| norm_num_groups: int = 32, | |
| sample_size: int = 32, | |
| scaling_factor: float = 0.18215, | |
| ) -> None: | |
| super().__init__() | |
| # pass init params to Encoder | |
| self.encoder = Encoder( | |
| in_channels=in_channels, | |
| out_channels=latent_channels, | |
| down_block_types=down_block_types, | |
| block_out_channels=down_block_out_channels, | |
| layers_per_block=layers_per_down_block, | |
| act_fn=act_fn, | |
| norm_num_groups=norm_num_groups, | |
| double_z=True, | |
| ) | |
| # pass init params to Decoder | |
| self.decoder = MaskConditionDecoder( | |
| in_channels=latent_channels, | |
| out_channels=out_channels, | |
| up_block_types=up_block_types, | |
| block_out_channels=up_block_out_channels, | |
| layers_per_block=layers_per_up_block, | |
| act_fn=act_fn, | |
| norm_num_groups=norm_num_groups, | |
| ) | |
| self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
| self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) | |
| self.use_slicing = False | |
| self.use_tiling = False | |
| self.register_to_config(block_out_channels=up_block_out_channels) | |
| self.register_to_config(force_upcast=False) | |
| def encode( | |
| self, x: torch.FloatTensor, return_dict: bool = True | |
| ) -> Union[AutoencoderKLOutput, Tuple[torch.FloatTensor]]: | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _decode( | |
| self, | |
| z: torch.FloatTensor, | |
| image: Optional[torch.FloatTensor] = None, | |
| mask: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z, image, mask) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def decode( | |
| self, | |
| z: torch.FloatTensor, | |
| generator: Optional[torch.Generator] = None, | |
| image: Optional[torch.FloatTensor] = None, | |
| mask: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: | |
| decoded = self._decode(z, image, mask).sample | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| mask: Optional[torch.FloatTensor] = None, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): Input sample. | |
| mask (`torch.FloatTensor`, *optional*, defaults to `None`): Optional inpainting mask. | |
| sample_posterior (`bool`, *optional*, defaults to `False`): | |
| Whether to sample from the posterior. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
| """ | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z, sample, mask).sample | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |