Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ..utils import USE_PEFT_BACKEND | |
| from .lora import LoRACompatibleConv | |
| from .normalization import RMSNorm | |
| from .upsampling import upfirdn2d_native | |
| class Downsample1D(nn.Module): | |
| """A 1D downsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| padding (`int`, default `1`): | |
| padding for the convolution. | |
| name (`str`, default `conv`): | |
| name of the downsampling 1D layer. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| use_conv: bool = False, | |
| out_channels: Optional[int] = None, | |
| padding: int = 1, | |
| name: str = "conv", | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.padding = padding | |
| stride = 2 | |
| self.name = name | |
| if use_conv: | |
| self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| assert inputs.shape[1] == self.channels | |
| return self.conv(inputs) | |
| class Downsample2D(nn.Module): | |
| """A 2D downsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| padding (`int`, default `1`): | |
| padding for the convolution. | |
| name (`str`, default `conv`): | |
| name of the downsampling 2D layer. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| use_conv: bool = False, | |
| out_channels: Optional[int] = None, | |
| padding: int = 1, | |
| name: str = "conv", | |
| kernel_size=3, | |
| norm_type=None, | |
| eps=None, | |
| elementwise_affine=None, | |
| bias=True, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.padding = padding | |
| stride = 2 | |
| self.name = name | |
| conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
| if norm_type == "ln_norm": | |
| self.norm = nn.LayerNorm(channels, eps, elementwise_affine) | |
| elif norm_type == "rms_norm": | |
| self.norm = RMSNorm(channels, eps, elementwise_affine) | |
| elif norm_type is None: | |
| self.norm = None | |
| else: | |
| raise ValueError(f"unknown norm_type: {norm_type}") | |
| if use_conv: | |
| conv = conv_cls( | |
| self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias | |
| ) | |
| else: | |
| assert self.channels == self.out_channels | |
| conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
| # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
| if name == "conv": | |
| self.Conv2d_0 = conv | |
| self.conv = conv | |
| elif name == "Conv2d_0": | |
| self.conv = conv | |
| else: | |
| self.conv = conv | |
| def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: | |
| assert hidden_states.shape[1] == self.channels | |
| if self.norm is not None: | |
| hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| if self.use_conv and self.padding == 0: | |
| pad = (0, 1, 0, 1) | |
| hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) | |
| assert hidden_states.shape[1] == self.channels | |
| if not USE_PEFT_BACKEND: | |
| if isinstance(self.conv, LoRACompatibleConv): | |
| hidden_states = self.conv(hidden_states, scale) | |
| else: | |
| hidden_states = self.conv(hidden_states) | |
| else: | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class FirDownsample2D(nn.Module): | |
| """A 2D FIR downsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| fir_kernel (`tuple`, default `(1, 3, 3, 1)`): | |
| kernel for the FIR filter. | |
| """ | |
| def __init__( | |
| self, | |
| channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| use_conv: bool = False, | |
| fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), | |
| ): | |
| super().__init__() | |
| out_channels = out_channels if out_channels else channels | |
| if use_conv: | |
| self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| self.fir_kernel = fir_kernel | |
| self.use_conv = use_conv | |
| self.out_channels = out_channels | |
| def _downsample_2d( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| weight: Optional[torch.FloatTensor] = None, | |
| kernel: Optional[torch.FloatTensor] = None, | |
| factor: int = 2, | |
| gain: float = 1, | |
| ) -> torch.FloatTensor: | |
| """Fused `Conv2d()` followed by `downsample_2d()`. | |
| Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
| efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of | |
| arbitrary order. | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
| weight (`torch.FloatTensor`, *optional*): | |
| Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be | |
| performed by `inChannels = x.shape[0] // numGroups`. | |
| kernel (`torch.FloatTensor`, *optional*): | |
| FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which | |
| corresponds to average pooling. | |
| factor (`int`, *optional*, default to `2`): | |
| Integer downsampling factor. | |
| gain (`float`, *optional*, default to `1.0`): | |
| Scaling factor for signal magnitude. | |
| Returns: | |
| output (`torch.FloatTensor`): | |
| Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same | |
| datatype as `x`. | |
| """ | |
| assert isinstance(factor, int) and factor >= 1 | |
| if kernel is None: | |
| kernel = [1] * factor | |
| # setup kernel | |
| kernel = torch.tensor(kernel, dtype=torch.float32) | |
| if kernel.ndim == 1: | |
| kernel = torch.outer(kernel, kernel) | |
| kernel /= torch.sum(kernel) | |
| kernel = kernel * gain | |
| if self.use_conv: | |
| _, _, convH, convW = weight.shape | |
| pad_value = (kernel.shape[0] - factor) + (convW - 1) | |
| stride_value = [factor, factor] | |
| upfirdn_input = upfirdn2d_native( | |
| hidden_states, | |
| torch.tensor(kernel, device=hidden_states.device), | |
| pad=((pad_value + 1) // 2, pad_value // 2), | |
| ) | |
| output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) | |
| else: | |
| pad_value = kernel.shape[0] - factor | |
| output = upfirdn2d_native( | |
| hidden_states, | |
| torch.tensor(kernel, device=hidden_states.device), | |
| down=factor, | |
| pad=((pad_value + 1) // 2, pad_value // 2), | |
| ) | |
| return output | |
| def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
| if self.use_conv: | |
| downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) | |
| hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
| else: | |
| hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) | |
| return hidden_states | |
| # downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead | |
| class KDownsample2D(nn.Module): | |
| r"""A 2D K-downsampling layer. | |
| Parameters: | |
| pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. | |
| """ | |
| def __init__(self, pad_mode: str = "reflect"): | |
| super().__init__() | |
| self.pad_mode = pad_mode | |
| kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) | |
| self.pad = kernel_1d.shape[1] // 2 - 1 | |
| self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode) | |
| weight = inputs.new_zeros( | |
| [ | |
| inputs.shape[1], | |
| inputs.shape[1], | |
| self.kernel.shape[0], | |
| self.kernel.shape[1], | |
| ] | |
| ) | |
| indices = torch.arange(inputs.shape[1], device=inputs.device) | |
| kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) | |
| weight[indices, indices] = kernel | |
| return F.conv2d(inputs, weight, stride=2) | |
| def downsample_2d( | |
| hidden_states: torch.FloatTensor, | |
| kernel: Optional[torch.FloatTensor] = None, | |
| factor: int = 2, | |
| gain: float = 1, | |
| ) -> torch.FloatTensor: | |
| r"""Downsample2D a batch of 2D images with the given filter. | |
| Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the | |
| given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the | |
| specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its | |
| shape is a multiple of the downsampling factor. | |
| Args: | |
| hidden_states (`torch.FloatTensor`) | |
| Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
| kernel (`torch.FloatTensor`, *optional*): | |
| FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which | |
| corresponds to average pooling. | |
| factor (`int`, *optional*, default to `2`): | |
| Integer downsampling factor. | |
| gain (`float`, *optional*, default to `1.0`): | |
| Scaling factor for signal magnitude. | |
| Returns: | |
| output (`torch.FloatTensor`): | |
| Tensor of the shape `[N, C, H // factor, W // factor]` | |
| """ | |
| assert isinstance(factor, int) and factor >= 1 | |
| if kernel is None: | |
| kernel = [1] * factor | |
| kernel = torch.tensor(kernel, dtype=torch.float32) | |
| if kernel.ndim == 1: | |
| kernel = torch.outer(kernel, kernel) | |
| kernel /= torch.sum(kernel) | |
| kernel = kernel * gain | |
| pad_value = kernel.shape[0] - factor | |
| output = upfirdn2d_native( | |
| hidden_states, | |
| kernel.to(device=hidden_states.device), | |
| down=factor, | |
| pad=((pad_value + 1) // 2, pad_value // 2), | |
| ) | |
| return output | |