Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from importlib import import_module | |
| from typing import Callable, Optional, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from ..utils import USE_PEFT_BACKEND, deprecate, logging | |
| from ..utils.import_utils import is_xformers_available | |
| from ..utils.torch_utils import maybe_allow_in_graph | |
| from .lora import LoRACompatibleLinear, LoRALinearLayer | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| class Attention(nn.Module): | |
| r""" | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (`int`): | |
| The number of channels in the query. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
| heads (`int`, *optional*, defaults to 8): | |
| The number of heads to use for multi-head attention. | |
| dim_head (`int`, *optional*, defaults to 64): | |
| The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| bias (`bool`, *optional*, defaults to False): | |
| Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
| upcast_attention (`bool`, *optional*, defaults to False): | |
| Set to `True` to upcast the attention computation to `float32`. | |
| upcast_softmax (`bool`, *optional*, defaults to False): | |
| Set to `True` to upcast the softmax computation to `float32`. | |
| cross_attention_norm (`str`, *optional*, defaults to `None`): | |
| The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
| cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use for the group norm in the cross attention. | |
| added_kv_proj_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels to use for the added key and value projections. If `None`, no projection is used. | |
| norm_num_groups (`int`, *optional*, defaults to `None`): | |
| The number of groups to use for the group norm in the attention. | |
| spatial_norm_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels to use for the spatial normalization. | |
| out_bias (`bool`, *optional*, defaults to `True`): | |
| Set to `True` to use a bias in the output linear layer. | |
| scale_qk (`bool`, *optional*, defaults to `True`): | |
| Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | |
| only_cross_attention (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | |
| `added_kv_proj_dim` is not `None`. | |
| eps (`float`, *optional*, defaults to 1e-5): | |
| An additional value added to the denominator in group normalization that is used for numerical stability. | |
| rescale_output_factor (`float`, *optional*, defaults to 1.0): | |
| A factor to rescale the output by dividing it with this value. | |
| residual_connection (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to add the residual connection to the output. | |
| _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | |
| Set to `True` if the attention block is loaded from a deprecated state dict. | |
| processor (`AttnProcessor`, *optional*, defaults to `None`): | |
| The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | |
| `AttnProcessor` otherwise. | |
| """ | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias: bool = False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| cross_attention_norm: Optional[str] = None, | |
| cross_attention_norm_num_groups: int = 32, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| spatial_norm_dim: Optional[int] = None, | |
| out_bias: bool = True, | |
| scale_qk: bool = True, | |
| only_cross_attention: bool = False, | |
| eps: float = 1e-5, | |
| rescale_output_factor: float = 1.0, | |
| residual_connection: bool = False, | |
| _from_deprecated_attn_block: bool = False, | |
| processor: Optional["AttnProcessor"] = None, | |
| out_dim: int = None, | |
| ): | |
| super().__init__() | |
| self.inner_dim = out_dim if out_dim is not None else dim_head * heads | |
| self.query_dim = query_dim | |
| self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.rescale_output_factor = rescale_output_factor | |
| self.residual_connection = residual_connection | |
| self.dropout = dropout | |
| self.fused_projections = False | |
| self.out_dim = out_dim if out_dim is not None else query_dim | |
| # we make use of this private variable to know whether this class is loaded | |
| # with an deprecated state dict so that we can convert it on the fly | |
| self._from_deprecated_attn_block = _from_deprecated_attn_block | |
| self.scale_qk = scale_qk | |
| self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
| self.heads = out_dim // dim_head if out_dim is not None else heads | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| self.only_cross_attention = only_cross_attention | |
| if self.added_kv_proj_dim is None and self.only_cross_attention: | |
| raise ValueError( | |
| "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
| ) | |
| if norm_num_groups is not None: | |
| self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
| else: | |
| self.group_norm = None | |
| if spatial_norm_dim is not None: | |
| self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
| else: | |
| self.spatial_norm = None | |
| if cross_attention_norm is None: | |
| self.norm_cross = None | |
| elif cross_attention_norm == "layer_norm": | |
| self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
| elif cross_attention_norm == "group_norm": | |
| if self.added_kv_proj_dim is not None: | |
| # The given `encoder_hidden_states` are initially of shape | |
| # (batch_size, seq_len, added_kv_proj_dim) before being projected | |
| # to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
| # before the projection, so we need to use `added_kv_proj_dim` as | |
| # the number of channels for the group norm. | |
| norm_cross_num_channels = added_kv_proj_dim | |
| else: | |
| norm_cross_num_channels = self.cross_attention_dim | |
| self.norm_cross = nn.GroupNorm( | |
| num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
| ) | |
| else: | |
| raise ValueError( | |
| f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
| ) | |
| if USE_PEFT_BACKEND: | |
| linear_cls = nn.Linear | |
| else: | |
| linear_cls = LoRACompatibleLinear | |
| self.linear_cls = linear_cls | |
| self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) | |
| if not self.only_cross_attention: | |
| # only relevant for the `AddedKVProcessor` classes | |
| self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
| self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
| else: | |
| self.to_k = None | |
| self.to_v = None | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
| self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| if processor is None: | |
| processor = ( | |
| AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def set_use_memory_efficient_attention_xformers( | |
| self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
| ) -> None: | |
| r""" | |
| Set whether to use memory efficient attention from `xformers` or not. | |
| Args: | |
| use_memory_efficient_attention_xformers (`bool`): | |
| Whether to use memory efficient attention from `xformers` or not. | |
| attention_op (`Callable`, *optional*): | |
| The attention operation to use. Defaults to `None` which uses the default attention operation from | |
| `xformers`. | |
| """ | |
| is_lora = hasattr(self, "processor") and isinstance( | |
| self.processor, | |
| LORA_ATTENTION_PROCESSORS, | |
| ) | |
| is_custom_diffusion = hasattr(self, "processor") and isinstance( | |
| self.processor, | |
| (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), | |
| ) | |
| is_added_kv_processor = hasattr(self, "processor") and isinstance( | |
| self.processor, | |
| ( | |
| AttnAddedKVProcessor, | |
| AttnAddedKVProcessor2_0, | |
| SlicedAttnAddedKVProcessor, | |
| XFormersAttnAddedKVProcessor, | |
| LoRAAttnAddedKVProcessor, | |
| ), | |
| ) | |
| if use_memory_efficient_attention_xformers: | |
| if is_added_kv_processor and (is_lora or is_custom_diffusion): | |
| raise NotImplementedError( | |
| f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" | |
| ) | |
| if not is_xformers_available(): | |
| raise ModuleNotFoundError( | |
| ( | |
| "Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
| " xformers" | |
| ), | |
| name="xformers", | |
| ) | |
| elif not torch.cuda.is_available(): | |
| raise ValueError( | |
| "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" | |
| " only available for GPU " | |
| ) | |
| else: | |
| try: | |
| # Make sure we can run the memory efficient attention | |
| _ = xformers.ops.memory_efficient_attention( | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| ) | |
| except Exception as e: | |
| raise e | |
| if is_lora: | |
| # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers | |
| # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0? | |
| processor = LoRAXFormersAttnProcessor( | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| rank=self.processor.rank, | |
| attention_op=attention_op, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| processor.to(self.processor.to_q_lora.up.weight.device) | |
| elif is_custom_diffusion: | |
| processor = CustomDiffusionXFormersAttnProcessor( | |
| train_kv=self.processor.train_kv, | |
| train_q_out=self.processor.train_q_out, | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| attention_op=attention_op, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| if hasattr(self.processor, "to_k_custom_diffusion"): | |
| processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
| elif is_added_kv_processor: | |
| # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP | |
| # which uses this type of cross attention ONLY because the attention mask of format | |
| # [0, ..., -10.000, ..., 0, ...,] is not supported | |
| # throw warning | |
| logger.info( | |
| "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." | |
| ) | |
| processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) | |
| else: | |
| processor = XFormersAttnProcessor(attention_op=attention_op) | |
| else: | |
| if is_lora: | |
| attn_processor_class = ( | |
| LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
| ) | |
| processor = attn_processor_class( | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| rank=self.processor.rank, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| processor.to(self.processor.to_q_lora.up.weight.device) | |
| elif is_custom_diffusion: | |
| attn_processor_class = ( | |
| CustomDiffusionAttnProcessor2_0 | |
| if hasattr(F, "scaled_dot_product_attention") | |
| else CustomDiffusionAttnProcessor | |
| ) | |
| processor = attn_processor_class( | |
| train_kv=self.processor.train_kv, | |
| train_q_out=self.processor.train_q_out, | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| if hasattr(self.processor, "to_k_custom_diffusion"): | |
| processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
| else: | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| processor = ( | |
| AttnProcessor2_0() | |
| if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
| else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def set_attention_slice(self, slice_size: int) -> None: | |
| r""" | |
| Set the slice size for attention computation. | |
| Args: | |
| slice_size (`int`): | |
| The slice size for attention computation. | |
| """ | |
| if slice_size is not None and slice_size > self.sliceable_head_dim: | |
| raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
| if slice_size is not None and self.added_kv_proj_dim is not None: | |
| processor = SlicedAttnAddedKVProcessor(slice_size) | |
| elif slice_size is not None: | |
| processor = SlicedAttnProcessor(slice_size) | |
| elif self.added_kv_proj_dim is not None: | |
| processor = AttnAddedKVProcessor() | |
| else: | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| processor = ( | |
| AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def set_processor(self, processor: "AttnProcessor") -> None: | |
| r""" | |
| Set the attention processor to use. | |
| Args: | |
| processor (`AttnProcessor`): | |
| The attention processor to use. | |
| """ | |
| # if current processor is in `self._modules` and if passed `processor` is not, we need to | |
| # pop `processor` from `self._modules` | |
| if ( | |
| hasattr(self, "processor") | |
| and isinstance(self.processor, torch.nn.Module) | |
| and not isinstance(processor, torch.nn.Module) | |
| ): | |
| logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
| self._modules.pop("processor") | |
| self.processor = processor | |
| def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": | |
| r""" | |
| Get the attention processor in use. | |
| Args: | |
| return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to return the deprecated LoRA attention processor. | |
| Returns: | |
| "AttentionProcessor": The attention processor in use. | |
| """ | |
| if not return_deprecated_lora: | |
| return self.processor | |
| # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
| # serialization format for LoRA Attention Processors. It should be deleted once the integration | |
| # with PEFT is completed. | |
| is_lora_activated = { | |
| name: module.lora_layer is not None | |
| for name, module in self.named_modules() | |
| if hasattr(module, "lora_layer") | |
| } | |
| # 1. if no layer has a LoRA activated we can return the processor as usual | |
| if not any(is_lora_activated.values()): | |
| return self.processor | |
| # If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
| is_lora_activated.pop("add_k_proj", None) | |
| is_lora_activated.pop("add_v_proj", None) | |
| # 2. else it is not posssible that only some layers have LoRA activated | |
| if not all(is_lora_activated.values()): | |
| raise ValueError( | |
| f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
| ) | |
| # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
| non_lora_processor_cls_name = self.processor.__class__.__name__ | |
| lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
| hidden_size = self.inner_dim | |
| # now create a LoRA attention processor from the LoRA layers | |
| if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: | |
| kwargs = { | |
| "cross_attention_dim": self.cross_attention_dim, | |
| "rank": self.to_q.lora_layer.rank, | |
| "network_alpha": self.to_q.lora_layer.network_alpha, | |
| "q_rank": self.to_q.lora_layer.rank, | |
| "q_hidden_size": self.to_q.lora_layer.out_features, | |
| "k_rank": self.to_k.lora_layer.rank, | |
| "k_hidden_size": self.to_k.lora_layer.out_features, | |
| "v_rank": self.to_v.lora_layer.rank, | |
| "v_hidden_size": self.to_v.lora_layer.out_features, | |
| "out_rank": self.to_out[0].lora_layer.rank, | |
| "out_hidden_size": self.to_out[0].lora_layer.out_features, | |
| } | |
| if hasattr(self.processor, "attention_op"): | |
| kwargs["attention_op"] = self.processor.attention_op | |
| lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
| lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
| lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
| lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
| lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
| elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
| lora_processor = lora_processor_cls( | |
| hidden_size, | |
| cross_attention_dim=self.add_k_proj.weight.shape[0], | |
| rank=self.to_q.lora_layer.rank, | |
| network_alpha=self.to_q.lora_layer.network_alpha, | |
| ) | |
| lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
| lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
| lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
| lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
| # only save if used | |
| if self.add_k_proj.lora_layer is not None: | |
| lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) | |
| lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) | |
| else: | |
| lora_processor.add_k_proj_lora = None | |
| lora_processor.add_v_proj_lora = None | |
| else: | |
| raise ValueError(f"{lora_processor_cls} does not exist.") | |
| return lora_processor | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| **cross_attention_kwargs, | |
| ) -> torch.Tensor: | |
| r""" | |
| The forward method of the `Attention` class. | |
| Args: | |
| hidden_states (`torch.Tensor`): | |
| The hidden states of the query. | |
| encoder_hidden_states (`torch.Tensor`, *optional*): | |
| The hidden states of the encoder. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| The attention mask to use. If `None`, no mask is applied. | |
| **cross_attention_kwargs: | |
| Additional keyword arguments to pass along to the cross attention. | |
| Returns: | |
| `torch.Tensor`: The output of the attention layer. | |
| """ | |
| # The `Attention` class can call different attention processors / attention functions | |
| # here we simply pass along all tensors to the selected processor class | |
| # For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
| return self.processor( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: | |
| r""" | |
| Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` | |
| is the number of heads initialized while constructing the `Attention` class. | |
| Args: | |
| tensor (`torch.Tensor`): The tensor to reshape. | |
| Returns: | |
| `torch.Tensor`: The reshaped tensor. | |
| """ | |
| head_size = self.heads | |
| batch_size, seq_len, dim = tensor.shape | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: | |
| r""" | |
| Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is | |
| the number of heads initialized while constructing the `Attention` class. | |
| Args: | |
| tensor (`torch.Tensor`): The tensor to reshape. | |
| out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is | |
| reshaped to `[batch_size * heads, seq_len, dim // heads]`. | |
| Returns: | |
| `torch.Tensor`: The reshaped tensor. | |
| """ | |
| head_size = self.heads | |
| batch_size, seq_len, dim = tensor.shape | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3) | |
| if out_dim == 3: | |
| tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def get_attention_scores( | |
| self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None | |
| ) -> torch.Tensor: | |
| r""" | |
| Compute the attention scores. | |
| Args: | |
| query (`torch.Tensor`): The query tensor. | |
| key (`torch.Tensor`): The key tensor. | |
| attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
| Returns: | |
| `torch.Tensor`: The attention probabilities/scores. | |
| """ | |
| dtype = query.dtype | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| if attention_mask is None: | |
| baddbmm_input = torch.empty( | |
| query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
| ) | |
| beta = 0 | |
| else: | |
| baddbmm_input = attention_mask | |
| beta = 1 | |
| attention_scores = torch.baddbmm( | |
| baddbmm_input, | |
| query, | |
| key.transpose(-1, -2), | |
| beta=beta, | |
| alpha=self.scale, | |
| ) | |
| del baddbmm_input | |
| if self.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| del attention_scores | |
| attention_probs = attention_probs.to(dtype) | |
| return attention_probs | |
| def prepare_attention_mask( | |
| self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 | |
| ) -> torch.Tensor: | |
| r""" | |
| Prepare the attention mask for the attention computation. | |
| Args: | |
| attention_mask (`torch.Tensor`): | |
| The attention mask to prepare. | |
| target_length (`int`): | |
| The target length of the attention mask. This is the length of the attention mask after padding. | |
| batch_size (`int`): | |
| The batch size, which is used to repeat the attention mask. | |
| out_dim (`int`, *optional*, defaults to `3`): | |
| The output dimension of the attention mask. Can be either `3` or `4`. | |
| Returns: | |
| `torch.Tensor`: The prepared attention mask. | |
| """ | |
| head_size = self.heads | |
| if attention_mask is None: | |
| return attention_mask | |
| current_length: int = attention_mask.shape[-1] | |
| if current_length != target_length: | |
| if attention_mask.device.type == "mps": | |
| # HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
| # Instead, we can manually construct the padding tensor. | |
| padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
| padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
| attention_mask = torch.cat([attention_mask, padding], dim=2) | |
| else: | |
| # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
| # we want to instead pad by (0, remaining_length), where remaining_length is: | |
| # remaining_length: int = target_length - current_length | |
| # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| if out_dim == 3: | |
| if attention_mask.shape[0] < batch_size * head_size: | |
| attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
| elif out_dim == 4: | |
| attention_mask = attention_mask.unsqueeze(1) | |
| attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
| return attention_mask | |
| def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
| r""" | |
| Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the | |
| `Attention` class. | |
| Args: | |
| encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. | |
| Returns: | |
| `torch.Tensor`: The normalized encoder hidden states. | |
| """ | |
| assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
| if isinstance(self.norm_cross, nn.LayerNorm): | |
| encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
| elif isinstance(self.norm_cross, nn.GroupNorm): | |
| # Group norm norms along the channels dimension and expects | |
| # input to be in the shape of (N, C, *). In this case, we want | |
| # to norm along the hidden dimension, so we need to move | |
| # (batch_size, sequence_length, hidden_size) -> | |
| # (batch_size, hidden_size, sequence_length) | |
| encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
| encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
| else: | |
| assert False | |
| return encoder_hidden_states | |
| def fuse_projections(self, fuse=True): | |
| is_cross_attention = self.cross_attention_dim != self.query_dim | |
| device = self.to_q.weight.data.device | |
| dtype = self.to_q.weight.data.dtype | |
| if not is_cross_attention: | |
| # fetch weight matrices. | |
| concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data]) | |
| in_features = concatenated_weights.shape[1] | |
| out_features = concatenated_weights.shape[0] | |
| # create a new single projection layer and copy over the weights. | |
| self.to_qkv = self.linear_cls(in_features, out_features, bias=False, device=device, dtype=dtype) | |
| self.to_qkv.weight.copy_(concatenated_weights) | |
| else: | |
| concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data]) | |
| in_features = concatenated_weights.shape[1] | |
| out_features = concatenated_weights.shape[0] | |
| self.to_kv = self.linear_cls(in_features, out_features, bias=False, device=device, dtype=dtype) | |
| self.to_kv.weight.copy_(concatenated_weights) | |
| self.fused_projections = fuse | |
| class AttnProcessor: | |
| r""" | |
| Default processor for performing attention-related computations. | |
| """ | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states, *args) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states, *args) | |
| value = attn.to_v(encoder_hidden_states, *args) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class CustomDiffusionAttnProcessor(nn.Module): | |
| r""" | |
| Processor for implementing attention for the Custom Diffusion method. | |
| Args: | |
| train_kv (`bool`, defaults to `True`): | |
| Whether to newly train the key and value matrices corresponding to the text features. | |
| train_q_out (`bool`, defaults to `True`): | |
| Whether to newly train query matrices corresponding to the latent image features. | |
| hidden_size (`int`, *optional*, defaults to `None`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels in the `encoder_hidden_states`. | |
| out_bias (`bool`, defaults to `True`): | |
| Whether to include the bias parameter in `train_q_out`. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| """ | |
| def __init__( | |
| self, | |
| train_kv: bool = True, | |
| train_q_out: bool = True, | |
| hidden_size: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| out_bias: bool = True, | |
| dropout: float = 0.0, | |
| ): | |
| super().__init__() | |
| self.train_kv = train_kv | |
| self.train_q_out = train_q_out | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| # `_custom_diffusion` id for easy serialization and loading. | |
| if self.train_kv: | |
| self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| if self.train_q_out: | |
| self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) | |
| self.to_out_custom_diffusion = nn.ModuleList([]) | |
| self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) | |
| self.to_out_custom_diffusion.append(nn.Dropout(dropout)) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.Tensor: | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if self.train_q_out: | |
| query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) | |
| else: | |
| query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) | |
| if encoder_hidden_states is None: | |
| crossattn = False | |
| encoder_hidden_states = hidden_states | |
| else: | |
| crossattn = True | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| if self.train_kv: | |
| key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) | |
| value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) | |
| key = key.to(attn.to_q.weight.dtype) | |
| value = value.to(attn.to_q.weight.dtype) | |
| else: | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| if crossattn: | |
| detach = torch.ones_like(key) | |
| detach[:, :1, :] = detach[:, :1, :] * 0.0 | |
| key = detach * key + (1 - detach) * key.detach() | |
| value = detach * value + (1 - detach) * value.detach() | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| if self.train_q_out: | |
| # linear proj | |
| hidden_states = self.to_out_custom_diffusion[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out_custom_diffusion[1](hidden_states) | |
| else: | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class AttnAddedKVProcessor: | |
| r""" | |
| Processor for performing attention-related computations with extra learnable key and value matrices for the text | |
| encoder. | |
| """ | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states, *args) | |
| query = attn.head_to_batch_dim(query) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states, *args) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states, *args) | |
| encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) | |
| if not attn.only_cross_attention: | |
| key = attn.to_k(hidden_states, *args) | |
| value = attn.to_v(hidden_states, *args) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| key = encoder_hidden_states_key_proj | |
| value = encoder_hidden_states_value_proj | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class AttnAddedKVProcessor2_0: | |
| r""" | |
| Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra | |
| learnable key and value matrices for the text encoder. | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
| ) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states, *args) | |
| query = attn.head_to_batch_dim(query, out_dim=4) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4) | |
| encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4) | |
| if not attn.only_cross_attention: | |
| key = attn.to_k(hidden_states, *args) | |
| value = attn.to_v(hidden_states, *args) | |
| key = attn.head_to_batch_dim(key, out_dim=4) | |
| value = attn.head_to_batch_dim(value, out_dim=4) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
| else: | |
| key = encoder_hidden_states_key_proj | |
| value = encoder_hidden_states_value_proj | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1]) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class XFormersAttnAddedKVProcessor: | |
| r""" | |
| Processor for implementing memory efficient attention using xFormers. | |
| Args: | |
| attention_op (`Callable`, *optional*, defaults to `None`): | |
| The base | |
| [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to | |
| use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best | |
| operator. | |
| """ | |
| def __init__(self, attention_op: Optional[Callable] = None): | |
| self.attention_op = attention_op | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) | |
| if not attn.only_cross_attention: | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| key = encoder_hidden_states_key_proj | |
| value = encoder_hidden_states_value_proj | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class XFormersAttnProcessor: | |
| r""" | |
| Processor for implementing memory efficient attention using xFormers. | |
| Args: | |
| attention_op (`Callable`, *optional*, defaults to `None`): | |
| The base | |
| [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to | |
| use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best | |
| operator. | |
| """ | |
| def __init__(self, attention_op: Optional[Callable] = None): | |
| self.attention_op = attention_op | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, key_tokens, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) | |
| if attention_mask is not None: | |
| # expand our mask's singleton query_tokens dimension: | |
| # [batch*heads, 1, key_tokens] -> | |
| # [batch*heads, query_tokens, key_tokens] | |
| # so that it can be added as a bias onto the attention scores that xformers computes: | |
| # [batch*heads, query_tokens, key_tokens] | |
| # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. | |
| _, query_tokens, _ = hidden_states.shape | |
| attention_mask = attention_mask.expand(-1, query_tokens, -1) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states, *args) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states, *args) | |
| value = attn.to_v(encoder_hidden_states, *args) | |
| query = attn.head_to_batch_dim(query).contiguous() | |
| key = attn.head_to_batch_dim(key).contiguous() | |
| value = attn.head_to_batch_dim(value).contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class AttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| query = attn.to_q(hidden_states, *args) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states, *args) | |
| value = attn.to_v(encoder_hidden_states, *args) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class FusedAttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query, | |
| key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is currently 🧪 experimental in nature and can change in future. | |
| </Tip> | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0." | |
| ) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| if encoder_hidden_states is None: | |
| qkv = attn.to_qkv(hidden_states, *args) | |
| split_size = qkv.shape[-1] // 3 | |
| query, key, value = torch.split(qkv, split_size, dim=-1) | |
| else: | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| query = attn.to_q(hidden_states, *args) | |
| kv = attn.to_kv(encoder_hidden_states, *args) | |
| split_size = kv.shape[-1] // 2 | |
| key, value = torch.split(kv, split_size, dim=-1) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class CustomDiffusionXFormersAttnProcessor(nn.Module): | |
| r""" | |
| Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method. | |
| Args: | |
| train_kv (`bool`, defaults to `True`): | |
| Whether to newly train the key and value matrices corresponding to the text features. | |
| train_q_out (`bool`, defaults to `True`): | |
| Whether to newly train query matrices corresponding to the latent image features. | |
| hidden_size (`int`, *optional*, defaults to `None`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels in the `encoder_hidden_states`. | |
| out_bias (`bool`, defaults to `True`): | |
| Whether to include the bias parameter in `train_q_out`. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| attention_op (`Callable`, *optional*, defaults to `None`): | |
| The base | |
| [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use | |
| as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. | |
| """ | |
| def __init__( | |
| self, | |
| train_kv: bool = True, | |
| train_q_out: bool = False, | |
| hidden_size: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| out_bias: bool = True, | |
| dropout: float = 0.0, | |
| attention_op: Optional[Callable] = None, | |
| ): | |
| super().__init__() | |
| self.train_kv = train_kv | |
| self.train_q_out = train_q_out | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.attention_op = attention_op | |
| # `_custom_diffusion` id for easy serialization and loading. | |
| if self.train_kv: | |
| self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| if self.train_q_out: | |
| self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) | |
| self.to_out_custom_diffusion = nn.ModuleList([]) | |
| self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) | |
| self.to_out_custom_diffusion.append(nn.Dropout(dropout)) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if self.train_q_out: | |
| query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) | |
| else: | |
| query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) | |
| if encoder_hidden_states is None: | |
| crossattn = False | |
| encoder_hidden_states = hidden_states | |
| else: | |
| crossattn = True | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| if self.train_kv: | |
| key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) | |
| value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) | |
| key = key.to(attn.to_q.weight.dtype) | |
| value = value.to(attn.to_q.weight.dtype) | |
| else: | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| if crossattn: | |
| detach = torch.ones_like(key) | |
| detach[:, :1, :] = detach[:, :1, :] * 0.0 | |
| key = detach * key + (1 - detach) * key.detach() | |
| value = detach * value + (1 - detach) * value.detach() | |
| query = attn.head_to_batch_dim(query).contiguous() | |
| key = attn.head_to_batch_dim(key).contiguous() | |
| value = attn.head_to_batch_dim(value).contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| if self.train_q_out: | |
| # linear proj | |
| hidden_states = self.to_out_custom_diffusion[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out_custom_diffusion[1](hidden_states) | |
| else: | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class CustomDiffusionAttnProcessor2_0(nn.Module): | |
| r""" | |
| Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled | |
| dot-product attention. | |
| Args: | |
| train_kv (`bool`, defaults to `True`): | |
| Whether to newly train the key and value matrices corresponding to the text features. | |
| train_q_out (`bool`, defaults to `True`): | |
| Whether to newly train query matrices corresponding to the latent image features. | |
| hidden_size (`int`, *optional*, defaults to `None`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels in the `encoder_hidden_states`. | |
| out_bias (`bool`, defaults to `True`): | |
| Whether to include the bias parameter in `train_q_out`. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| """ | |
| def __init__( | |
| self, | |
| train_kv: bool = True, | |
| train_q_out: bool = True, | |
| hidden_size: Optional[int] = None, | |
| cross_attention_dim: Optional[int] = None, | |
| out_bias: bool = True, | |
| dropout: float = 0.0, | |
| ): | |
| super().__init__() | |
| self.train_kv = train_kv | |
| self.train_q_out = train_q_out | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| # `_custom_diffusion` id for easy serialization and loading. | |
| if self.train_kv: | |
| self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| if self.train_q_out: | |
| self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) | |
| self.to_out_custom_diffusion = nn.ModuleList([]) | |
| self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) | |
| self.to_out_custom_diffusion.append(nn.Dropout(dropout)) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if self.train_q_out: | |
| query = self.to_q_custom_diffusion(hidden_states) | |
| else: | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| crossattn = False | |
| encoder_hidden_states = hidden_states | |
| else: | |
| crossattn = True | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| if self.train_kv: | |
| key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) | |
| value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) | |
| key = key.to(attn.to_q.weight.dtype) | |
| value = value.to(attn.to_q.weight.dtype) | |
| else: | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| if crossattn: | |
| detach = torch.ones_like(key) | |
| detach[:, :1, :] = detach[:, :1, :] * 0.0 | |
| key = detach * key + (1 - detach) * key.detach() | |
| value = detach * value + (1 - detach) * value.detach() | |
| inner_dim = hidden_states.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| if self.train_q_out: | |
| # linear proj | |
| hidden_states = self.to_out_custom_diffusion[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out_custom_diffusion[1](hidden_states) | |
| else: | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class SlicedAttnProcessor: | |
| r""" | |
| Processor for implementing sliced attention. | |
| Args: | |
| slice_size (`int`, *optional*): | |
| The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and | |
| `attention_head_dim` must be a multiple of the `slice_size`. | |
| """ | |
| def __init__(self, slice_size: int): | |
| self.slice_size = slice_size | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = attn.head_to_batch_dim(query) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| batch_size_attention, query_tokens, _ = query.shape | |
| hidden_states = torch.zeros( | |
| (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype | |
| ) | |
| for i in range(batch_size_attention // self.slice_size): | |
| start_idx = i * self.slice_size | |
| end_idx = (i + 1) * self.slice_size | |
| query_slice = query[start_idx:end_idx] | |
| key_slice = key[start_idx:end_idx] | |
| attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None | |
| attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) | |
| attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
| hidden_states[start_idx:end_idx] = attn_slice | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class SlicedAttnAddedKVProcessor: | |
| r""" | |
| Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. | |
| Args: | |
| slice_size (`int`, *optional*): | |
| The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and | |
| `attention_head_dim` must be a multiple of the `slice_size`. | |
| """ | |
| def __init__(self, slice_size): | |
| self.slice_size = slice_size | |
| def __call__( | |
| self, | |
| attn: "Attention", | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = attn.head_to_batch_dim(query) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) | |
| if not attn.only_cross_attention: | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| key = encoder_hidden_states_key_proj | |
| value = encoder_hidden_states_value_proj | |
| batch_size_attention, query_tokens, _ = query.shape | |
| hidden_states = torch.zeros( | |
| (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype | |
| ) | |
| for i in range(batch_size_attention // self.slice_size): | |
| start_idx = i * self.slice_size | |
| end_idx = (i + 1) * self.slice_size | |
| query_slice = query[start_idx:end_idx] | |
| key_slice = key[start_idx:end_idx] | |
| attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None | |
| attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) | |
| attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
| hidden_states[start_idx:end_idx] = attn_slice | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class SpatialNorm(nn.Module): | |
| """ | |
| Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. | |
| Args: | |
| f_channels (`int`): | |
| The number of channels for input to group normalization layer, and output of the spatial norm layer. | |
| zq_channels (`int`): | |
| The number of channels for the quantized vector as described in the paper. | |
| """ | |
| def __init__( | |
| self, | |
| f_channels: int, | |
| zq_channels: int, | |
| ): | |
| super().__init__() | |
| self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) | |
| self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
| self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor: | |
| f_size = f.shape[-2:] | |
| zq = F.interpolate(zq, size=f_size, mode="nearest") | |
| norm_f = self.norm_layer(f) | |
| new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
| return new_f | |
| ## Deprecated | |
| class LoRAAttnProcessor(nn.Module): | |
| r""" | |
| Processor for implementing the LoRA attention mechanism. | |
| Args: | |
| hidden_size (`int`, *optional*): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the `encoder_hidden_states`. | |
| rank (`int`, defaults to 4): | |
| The dimension of the LoRA update matrices. | |
| network_alpha (`int`, *optional*): | |
| Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. | |
| kwargs (`dict`): | |
| Additional keyword arguments to pass to the `LoRALinearLayer` layers. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| cross_attention_dim: Optional[int] = None, | |
| rank: int = 4, | |
| network_alpha: Optional[int] = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.rank = rank | |
| q_rank = kwargs.pop("q_rank", None) | |
| q_hidden_size = kwargs.pop("q_hidden_size", None) | |
| q_rank = q_rank if q_rank is not None else rank | |
| q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size | |
| v_rank = kwargs.pop("v_rank", None) | |
| v_hidden_size = kwargs.pop("v_hidden_size", None) | |
| v_rank = v_rank if v_rank is not None else rank | |
| v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size | |
| out_rank = kwargs.pop("out_rank", None) | |
| out_hidden_size = kwargs.pop("out_hidden_size", None) | |
| out_rank = out_rank if out_rank is not None else rank | |
| out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size | |
| self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha) | |
| self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
| self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha) | |
| self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha) | |
| def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| self_cls_name = self.__class__.__name__ | |
| deprecate( | |
| self_cls_name, | |
| "0.26.0", | |
| ( | |
| f"Make sure use {self_cls_name[4:]} instead by setting" | |
| "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using" | |
| " `LoraLoaderMixin.load_lora_weights`" | |
| ), | |
| ) | |
| attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device) | |
| attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device) | |
| attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device) | |
| attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device) | |
| attn._modules.pop("processor") | |
| attn.processor = AttnProcessor() | |
| return attn.processor(attn, hidden_states, *args, **kwargs) | |
| class LoRAAttnProcessor2_0(nn.Module): | |
| r""" | |
| Processor for implementing the LoRA attention mechanism using PyTorch 2.0's memory-efficient scaled dot-product | |
| attention. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the `encoder_hidden_states`. | |
| rank (`int`, defaults to 4): | |
| The dimension of the LoRA update matrices. | |
| network_alpha (`int`, *optional*): | |
| Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. | |
| kwargs (`dict`): | |
| Additional keyword arguments to pass to the `LoRALinearLayer` layers. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| cross_attention_dim: Optional[int] = None, | |
| rank: int = 4, | |
| network_alpha: Optional[int] = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.rank = rank | |
| q_rank = kwargs.pop("q_rank", None) | |
| q_hidden_size = kwargs.pop("q_hidden_size", None) | |
| q_rank = q_rank if q_rank is not None else rank | |
| q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size | |
| v_rank = kwargs.pop("v_rank", None) | |
| v_hidden_size = kwargs.pop("v_hidden_size", None) | |
| v_rank = v_rank if v_rank is not None else rank | |
| v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size | |
| out_rank = kwargs.pop("out_rank", None) | |
| out_hidden_size = kwargs.pop("out_hidden_size", None) | |
| out_rank = out_rank if out_rank is not None else rank | |
| out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size | |
| self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha) | |
| self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
| self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha) | |
| self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha) | |
| def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| self_cls_name = self.__class__.__name__ | |
| deprecate( | |
| self_cls_name, | |
| "0.26.0", | |
| ( | |
| f"Make sure use {self_cls_name[4:]} instead by setting" | |
| "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using" | |
| " `LoraLoaderMixin.load_lora_weights`" | |
| ), | |
| ) | |
| attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device) | |
| attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device) | |
| attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device) | |
| attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device) | |
| attn._modules.pop("processor") | |
| attn.processor = AttnProcessor2_0() | |
| return attn.processor(attn, hidden_states, *args, **kwargs) | |
| class LoRAXFormersAttnProcessor(nn.Module): | |
| r""" | |
| Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers. | |
| Args: | |
| hidden_size (`int`, *optional*): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the `encoder_hidden_states`. | |
| rank (`int`, defaults to 4): | |
| The dimension of the LoRA update matrices. | |
| attention_op (`Callable`, *optional*, defaults to `None`): | |
| The base | |
| [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to | |
| use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best | |
| operator. | |
| network_alpha (`int`, *optional*): | |
| Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. | |
| kwargs (`dict`): | |
| Additional keyword arguments to pass to the `LoRALinearLayer` layers. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| cross_attention_dim: int, | |
| rank: int = 4, | |
| attention_op: Optional[Callable] = None, | |
| network_alpha: Optional[int] = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.rank = rank | |
| self.attention_op = attention_op | |
| q_rank = kwargs.pop("q_rank", None) | |
| q_hidden_size = kwargs.pop("q_hidden_size", None) | |
| q_rank = q_rank if q_rank is not None else rank | |
| q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size | |
| v_rank = kwargs.pop("v_rank", None) | |
| v_hidden_size = kwargs.pop("v_hidden_size", None) | |
| v_rank = v_rank if v_rank is not None else rank | |
| v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size | |
| out_rank = kwargs.pop("out_rank", None) | |
| out_hidden_size = kwargs.pop("out_hidden_size", None) | |
| out_rank = out_rank if out_rank is not None else rank | |
| out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size | |
| self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha) | |
| self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
| self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha) | |
| self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha) | |
| def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| self_cls_name = self.__class__.__name__ | |
| deprecate( | |
| self_cls_name, | |
| "0.26.0", | |
| ( | |
| f"Make sure use {self_cls_name[4:]} instead by setting" | |
| "LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using" | |
| " `LoraLoaderMixin.load_lora_weights`" | |
| ), | |
| ) | |
| attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device) | |
| attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device) | |
| attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device) | |
| attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device) | |
| attn._modules.pop("processor") | |
| attn.processor = XFormersAttnProcessor() | |
| return attn.processor(attn, hidden_states, *args, **kwargs) | |
| class LoRAAttnAddedKVProcessor(nn.Module): | |
| r""" | |
| Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text | |
| encoder. | |
| Args: | |
| hidden_size (`int`, *optional*): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels in the `encoder_hidden_states`. | |
| rank (`int`, defaults to 4): | |
| The dimension of the LoRA update matrices. | |
| network_alpha (`int`, *optional*): | |
| Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs. | |
| kwargs (`dict`): | |
| Additional keyword arguments to pass to the `LoRALinearLayer` layers. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| cross_attention_dim: Optional[int] = None, | |
| rank: int = 4, | |
| network_alpha: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.rank = rank | |
| self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
| self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
| self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
| self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
| self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
| self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
| def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| self_cls_name = self.__class__.__name__ | |
| deprecate( | |
| self_cls_name, | |
| "0.26.0", | |
| ( | |
| f"Make sure use {self_cls_name[4:]} instead by setting" | |
| "LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using" | |
| " `LoraLoaderMixin.load_lora_weights`" | |
| ), | |
| ) | |
| attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device) | |
| attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device) | |
| attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device) | |
| attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device) | |
| attn._modules.pop("processor") | |
| attn.processor = AttnAddedKVProcessor() | |
| return attn.processor(attn, hidden_states, *args, **kwargs) | |
| class IPAdapterAttnProcessor(nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| num_tokens (`int`, defaults to 4): | |
| The context length of the image features. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=4, scale=1.0): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.num_tokens = num_tokens | |
| self.scale = scale | |
| self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| scale=1.0, | |
| ): | |
| if scale != 1.0: | |
| logger.warning("`scale` of IPAttnProcessor should be set with `set_ip_adapter_scale`.") | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| # split hidden states | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| encoder_hidden_states[:, end_pos:, :], | |
| ) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # for ip-adapter | |
| ip_key = self.to_k_ip(ip_hidden_states) | |
| ip_value = self.to_v_ip(ip_hidden_states) | |
| ip_key = attn.head_to_batch_dim(ip_key) | |
| ip_value = attn.head_to_batch_dim(ip_value) | |
| ip_attention_probs = attn.get_attention_scores(query, ip_key, None) | |
| ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) | |
| ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class IPAdapterAttnProcessor2_0(torch.nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater for PyTorch 2.0. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| num_tokens (`int`, defaults to 4): | |
| The context length of the image features. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=4, scale=1.0): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
| ) | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.num_tokens = num_tokens | |
| self.scale = scale | |
| self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| scale=1.0, | |
| ): | |
| if scale != 1.0: | |
| logger.warning("`scale` of IPAttnProcessor should be set by `set_ip_adapter_scale`.") | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| # split hidden states | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| encoder_hidden_states[:, end_pos:, :], | |
| ) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # for ip-adapter | |
| ip_key = self.to_k_ip(ip_hidden_states) | |
| ip_value = self.to_v_ip(ip_hidden_states) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| ip_hidden_states = F.scaled_dot_product_attention( | |
| query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| ip_hidden_states = ip_hidden_states.to(query.dtype) | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| LORA_ATTENTION_PROCESSORS = ( | |
| LoRAAttnProcessor, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| LoRAAttnAddedKVProcessor, | |
| ) | |
| ADDED_KV_ATTENTION_PROCESSORS = ( | |
| AttnAddedKVProcessor, | |
| SlicedAttnAddedKVProcessor, | |
| AttnAddedKVProcessor2_0, | |
| XFormersAttnAddedKVProcessor, | |
| LoRAAttnAddedKVProcessor, | |
| ) | |
| CROSS_ATTENTION_PROCESSORS = ( | |
| AttnProcessor, | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| SlicedAttnProcessor, | |
| LoRAAttnProcessor, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| IPAdapterAttnProcessor, | |
| IPAdapterAttnProcessor2_0, | |
| ) | |
| AttentionProcessor = Union[ | |
| AttnProcessor, | |
| AttnProcessor2_0, | |
| FusedAttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| SlicedAttnProcessor, | |
| AttnAddedKVProcessor, | |
| SlicedAttnAddedKVProcessor, | |
| AttnAddedKVProcessor2_0, | |
| XFormersAttnAddedKVProcessor, | |
| CustomDiffusionAttnProcessor, | |
| CustomDiffusionXFormersAttnProcessor, | |
| CustomDiffusionAttnProcessor2_0, | |
| # deprecated | |
| LoRAAttnProcessor, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| LoRAAttnAddedKVProcessor, | |
| ] | |