Spaces:
Sleeping
Sleeping
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Dict, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...utils import BaseOutput, logging | |
| from ..attention_processor import Attention, AttentionProcessor, AttnProcessor | |
| from ..embeddings import TimestepEmbedding, Timesteps | |
| from ..modeling_utils import ModelMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class Kandinsky3UNetOutput(BaseOutput): | |
| sample: torch.FloatTensor = None | |
| class Kandinsky3EncoderProj(nn.Module): | |
| def __init__(self, encoder_hid_dim, cross_attention_dim): | |
| super().__init__() | |
| self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False) | |
| self.projection_norm = nn.LayerNorm(cross_attention_dim) | |
| def forward(self, x): | |
| x = self.projection_linear(x) | |
| x = self.projection_norm(x) | |
| return x | |
| class Kandinsky3UNet(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| in_channels: int = 4, | |
| time_embedding_dim: int = 1536, | |
| groups: int = 32, | |
| attention_head_dim: int = 64, | |
| layers_per_block: Union[int, Tuple[int]] = 3, | |
| block_out_channels: Tuple[int] = (384, 768, 1536, 3072), | |
| cross_attention_dim: Union[int, Tuple[int]] = 4096, | |
| encoder_hid_dim: int = 4096, | |
| ): | |
| super().__init__() | |
| # TOOD(Yiyi): Give better name and put into config for the following 4 parameters | |
| expansion_ratio = 4 | |
| compression_ratio = 2 | |
| add_cross_attention = (False, True, True, True) | |
| add_self_attention = (False, True, True, True) | |
| out_channels = in_channels | |
| init_channels = block_out_channels[0] // 2 | |
| self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1) | |
| self.time_embedding = TimestepEmbedding( | |
| init_channels, | |
| time_embedding_dim, | |
| ) | |
| self.add_time_condition = Kandinsky3AttentionPooling( | |
| time_embedding_dim, cross_attention_dim, attention_head_dim | |
| ) | |
| self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1) | |
| self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim) | |
| hidden_dims = [init_channels] + list(block_out_channels) | |
| in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:])) | |
| text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention] | |
| num_blocks = len(block_out_channels) * [layers_per_block] | |
| layer_params = [num_blocks, text_dims, add_self_attention] | |
| rev_layer_params = map(reversed, layer_params) | |
| cat_dims = [] | |
| self.num_levels = len(in_out_dims) | |
| self.down_blocks = nn.ModuleList([]) | |
| for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate( | |
| zip(in_out_dims, *layer_params) | |
| ): | |
| down_sample = level != (self.num_levels - 1) | |
| cat_dims.append(out_dim if level != (self.num_levels - 1) else 0) | |
| self.down_blocks.append( | |
| Kandinsky3DownSampleBlock( | |
| in_dim, | |
| out_dim, | |
| time_embedding_dim, | |
| text_dim, | |
| res_block_num, | |
| groups, | |
| attention_head_dim, | |
| expansion_ratio, | |
| compression_ratio, | |
| down_sample, | |
| self_attention, | |
| ) | |
| ) | |
| self.up_blocks = nn.ModuleList([]) | |
| for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate( | |
| zip(reversed(in_out_dims), *rev_layer_params) | |
| ): | |
| up_sample = level != 0 | |
| self.up_blocks.append( | |
| Kandinsky3UpSampleBlock( | |
| in_dim, | |
| cat_dims.pop(), | |
| out_dim, | |
| time_embedding_dim, | |
| text_dim, | |
| res_block_num, | |
| groups, | |
| attention_head_dim, | |
| expansion_ratio, | |
| compression_ratio, | |
| up_sample, | |
| self_attention, | |
| ) | |
| ) | |
| self.conv_norm_out = nn.GroupNorm(groups, init_channels) | |
| self.conv_act_out = nn.SiLU() | |
| self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1) | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "set_processor"): | |
| processors[f"{name}.processor"] = module.processor | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| self.set_attn_processor(AttnProcessor()) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True): | |
| if encoder_attention_mask is not None: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| if not torch.is_tensor(timestep): | |
| dtype = torch.float32 if isinstance(timestep, float) else torch.int32 | |
| timestep = torch.tensor([timestep], dtype=dtype, device=sample.device) | |
| elif len(timestep.shape) == 0: | |
| timestep = timestep[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = timestep.expand(sample.shape[0]) | |
| time_embed_input = self.time_proj(timestep).to(sample.dtype) | |
| time_embed = self.time_embedding(time_embed_input) | |
| encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
| if encoder_hidden_states is not None: | |
| time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask) | |
| hidden_states = [] | |
| sample = self.conv_in(sample) | |
| for level, down_sample in enumerate(self.down_blocks): | |
| sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) | |
| if level != self.num_levels - 1: | |
| hidden_states.append(sample) | |
| for level, up_sample in enumerate(self.up_blocks): | |
| if level != 0: | |
| sample = torch.cat([sample, hidden_states.pop()], dim=1) | |
| sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act_out(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return Kandinsky3UNetOutput(sample=sample) | |
| class Kandinsky3UpSampleBlock(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| cat_dim, | |
| out_channels, | |
| time_embed_dim, | |
| context_dim=None, | |
| num_blocks=3, | |
| groups=32, | |
| head_dim=64, | |
| expansion_ratio=4, | |
| compression_ratio=2, | |
| up_sample=True, | |
| self_attention=True, | |
| ): | |
| super().__init__() | |
| up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1) | |
| hidden_channels = ( | |
| [(in_channels + cat_dim, in_channels)] | |
| + [(in_channels, in_channels)] * (num_blocks - 2) | |
| + [(in_channels, out_channels)] | |
| ) | |
| attentions = [] | |
| resnets_in = [] | |
| resnets_out = [] | |
| self.self_attention = self_attention | |
| self.context_dim = context_dim | |
| if self_attention: | |
| attentions.append( | |
| Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) | |
| ) | |
| else: | |
| attentions.append(nn.Identity()) | |
| for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): | |
| resnets_in.append( | |
| Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution) | |
| ) | |
| if context_dim is not None: | |
| attentions.append( | |
| Kandinsky3AttentionBlock( | |
| in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio | |
| ) | |
| ) | |
| else: | |
| attentions.append(nn.Identity()) | |
| resnets_out.append( | |
| Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets_in = nn.ModuleList(resnets_in) | |
| self.resnets_out = nn.ModuleList(resnets_out) | |
| def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): | |
| for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): | |
| x = resnet_in(x, time_embed) | |
| if self.context_dim is not None: | |
| x = attention(x, time_embed, context, context_mask, image_mask) | |
| x = resnet_out(x, time_embed) | |
| if self.self_attention: | |
| x = self.attentions[0](x, time_embed, image_mask=image_mask) | |
| return x | |
| class Kandinsky3DownSampleBlock(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| time_embed_dim, | |
| context_dim=None, | |
| num_blocks=3, | |
| groups=32, | |
| head_dim=64, | |
| expansion_ratio=4, | |
| compression_ratio=2, | |
| down_sample=True, | |
| self_attention=True, | |
| ): | |
| super().__init__() | |
| attentions = [] | |
| resnets_in = [] | |
| resnets_out = [] | |
| self.self_attention = self_attention | |
| self.context_dim = context_dim | |
| if self_attention: | |
| attentions.append( | |
| Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) | |
| ) | |
| else: | |
| attentions.append(nn.Identity()) | |
| up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]] | |
| hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1) | |
| for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): | |
| resnets_in.append( | |
| Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) | |
| ) | |
| if context_dim is not None: | |
| attentions.append( | |
| Kandinsky3AttentionBlock( | |
| out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio | |
| ) | |
| ) | |
| else: | |
| attentions.append(nn.Identity()) | |
| resnets_out.append( | |
| Kandinsky3ResNetBlock( | |
| out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets_in = nn.ModuleList(resnets_in) | |
| self.resnets_out = nn.ModuleList(resnets_out) | |
| def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): | |
| if self.self_attention: | |
| x = self.attentions[0](x, time_embed, image_mask=image_mask) | |
| for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): | |
| x = resnet_in(x, time_embed) | |
| if self.context_dim is not None: | |
| x = attention(x, time_embed, context, context_mask, image_mask) | |
| x = resnet_out(x, time_embed) | |
| return x | |
| class Kandinsky3ConditionalGroupNorm(nn.Module): | |
| def __init__(self, groups, normalized_shape, context_dim): | |
| super().__init__() | |
| self.norm = nn.GroupNorm(groups, normalized_shape, affine=False) | |
| self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape)) | |
| self.context_mlp[1].weight.data.zero_() | |
| self.context_mlp[1].bias.data.zero_() | |
| def forward(self, x, context): | |
| context = self.context_mlp(context) | |
| for _ in range(len(x.shape[2:])): | |
| context = context.unsqueeze(-1) | |
| scale, shift = context.chunk(2, dim=1) | |
| x = self.norm(x) * (scale + 1.0) + shift | |
| return x | |
| class Kandinsky3Block(nn.Module): | |
| def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None): | |
| super().__init__() | |
| self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim) | |
| self.activation = nn.SiLU() | |
| if up_resolution is not None and up_resolution: | |
| self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) | |
| else: | |
| self.up_sample = nn.Identity() | |
| padding = int(kernel_size > 1) | |
| self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) | |
| if up_resolution is not None and not up_resolution: | |
| self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) | |
| else: | |
| self.down_sample = nn.Identity() | |
| def forward(self, x, time_embed): | |
| x = self.group_norm(x, time_embed) | |
| x = self.activation(x) | |
| x = self.up_sample(x) | |
| x = self.projection(x) | |
| x = self.down_sample(x) | |
| return x | |
| class Kandinsky3ResNetBlock(nn.Module): | |
| def __init__( | |
| self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None] | |
| ): | |
| super().__init__() | |
| kernel_sizes = [1, 3, 3, 1] | |
| hidden_channel = max(in_channels, out_channels) // compression_ratio | |
| hidden_channels = ( | |
| [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)] | |
| ) | |
| self.resnet_blocks = nn.ModuleList( | |
| [ | |
| Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution) | |
| for (in_channel, out_channel), kernel_size, up_resolution in zip( | |
| hidden_channels, kernel_sizes, up_resolutions | |
| ) | |
| ] | |
| ) | |
| self.shortcut_up_sample = ( | |
| nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) | |
| if True in up_resolutions | |
| else nn.Identity() | |
| ) | |
| self.shortcut_projection = ( | |
| nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity() | |
| ) | |
| self.shortcut_down_sample = ( | |
| nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) | |
| if False in up_resolutions | |
| else nn.Identity() | |
| ) | |
| def forward(self, x, time_embed): | |
| out = x | |
| for resnet_block in self.resnet_blocks: | |
| out = resnet_block(out, time_embed) | |
| x = self.shortcut_up_sample(x) | |
| x = self.shortcut_projection(x) | |
| x = self.shortcut_down_sample(x) | |
| x = x + out | |
| return x | |
| class Kandinsky3AttentionPooling(nn.Module): | |
| def __init__(self, num_channels, context_dim, head_dim=64): | |
| super().__init__() | |
| self.attention = Attention( | |
| context_dim, | |
| context_dim, | |
| dim_head=head_dim, | |
| out_dim=num_channels, | |
| out_bias=False, | |
| ) | |
| def forward(self, x, context, context_mask=None): | |
| context_mask = context_mask.to(dtype=context.dtype) | |
| context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask) | |
| return x + context.squeeze(1) | |
| class Kandinsky3AttentionBlock(nn.Module): | |
| def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4): | |
| super().__init__() | |
| self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) | |
| self.attention = Attention( | |
| num_channels, | |
| context_dim or num_channels, | |
| dim_head=head_dim, | |
| out_dim=num_channels, | |
| out_bias=False, | |
| ) | |
| hidden_channels = expansion_ratio * num_channels | |
| self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) | |
| self.feed_forward = nn.Sequential( | |
| nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False), | |
| nn.SiLU(), | |
| nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False), | |
| ) | |
| def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): | |
| height, width = x.shape[-2:] | |
| out = self.in_norm(x, time_embed) | |
| out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1) | |
| context = context if context is not None else out | |
| if context_mask is not None: | |
| context_mask = context_mask.to(dtype=context.dtype) | |
| out = self.attention(out, context, context_mask) | |
| out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width) | |
| x = x + out | |
| out = self.out_norm(x, time_embed) | |
| out = self.feed_forward(out) | |
| x = x + out | |
| return x | |