Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput, logging | |
| from ..utils.torch_utils import randn_tensor | |
| from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete | |
| class EulerAncestralDiscreteSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| pred_original_sample: Optional[torch.FloatTensor] = None | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr | |
| def rescale_zero_terminal_snr(betas): | |
| """ | |
| Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) | |
| Args: | |
| betas (`torch.FloatTensor`): | |
| the betas that the scheduler is being initialized with. | |
| Returns: | |
| `torch.FloatTensor`: rescaled betas with zero terminal SNR | |
| """ | |
| # Convert betas to alphas_bar_sqrt | |
| alphas = 1.0 - betas | |
| alphas_cumprod = torch.cumprod(alphas, dim=0) | |
| alphas_bar_sqrt = alphas_cumprod.sqrt() | |
| # Store old values. | |
| alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
| alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
| # Shift so the last timestep is zero. | |
| alphas_bar_sqrt -= alphas_bar_sqrt_T | |
| # Scale so the first timestep is back to the old value. | |
| alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
| # Convert alphas_bar_sqrt to betas | |
| alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
| alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod | |
| alphas = torch.cat([alphas_bar[0:1], alphas]) | |
| betas = 1 - alphas | |
| return betas | |
| class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Ancestral sampling with Euler method steps. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| beta_start (`float`, defaults to 0.0001): | |
| The starting `beta` value of inference. | |
| beta_end (`float`, defaults to 0.02): | |
| The final `beta` value. | |
| beta_schedule (`str`, defaults to `"linear"`): | |
| The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
| `linear` or `scaled_linear`. | |
| trained_betas (`np.ndarray`, *optional*): | |
| Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
| prediction_type (`str`, defaults to `epsilon`, *optional*): | |
| Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
| `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
| Video](https://imagen.research.google/video/paper.pdf) paper). | |
| timestep_spacing (`str`, defaults to `"linspace"`): | |
| The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
| steps_offset (`int`, defaults to 0): | |
| An offset added to the inference steps. You can use a combination of `offset=1` and | |
| `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable | |
| Diffusion. | |
| rescale_betas_zero_snr (`bool`, defaults to `False`): | |
| Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and | |
| dark samples instead of limiting it to samples with medium brightness. Loosely related to | |
| [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.0001, | |
| beta_end: float = 0.02, | |
| beta_schedule: str = "linear", | |
| trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
| prediction_type: str = "epsilon", | |
| timestep_spacing: str = "linspace", | |
| steps_offset: int = 0, | |
| rescale_betas_zero_snr: bool = False, | |
| ): | |
| if trained_betas is not None: | |
| self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
| elif beta_schedule == "linear": | |
| self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
| elif beta_schedule == "scaled_linear": | |
| # this schedule is very specific to the latent diffusion model. | |
| self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
| elif beta_schedule == "squaredcos_cap_v2": | |
| # Glide cosine schedule | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| else: | |
| raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
| if rescale_betas_zero_snr: | |
| self.betas = rescale_zero_terminal_snr(self.betas) | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| if rescale_betas_zero_snr: | |
| # Close to 0 without being 0 so first sigma is not inf | |
| # FP16 smallest positive subnormal works well here | |
| self.alphas_cumprod[-1] = 2**-24 | |
| sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
| sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | |
| self.sigmas = torch.from_numpy(sigmas) | |
| # setable values | |
| self.num_inference_steps = None | |
| timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() | |
| self.timesteps = torch.from_numpy(timesteps) | |
| self.is_scale_input_called = False | |
| self._step_index = None | |
| self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| def init_noise_sigma(self): | |
| # standard deviation of the initial noise distribution | |
| if self.config.timestep_spacing in ["linspace", "trailing"]: | |
| return self.sigmas.max() | |
| return (self.sigmas.max() ** 2 + 1) ** 0.5 | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increae 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def scale_model_input( | |
| self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] | |
| ) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.FloatTensor`: | |
| A scaled input sample. | |
| """ | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| sigma = self.sigmas[self.step_index] | |
| sample = sample / ((sigma**2 + 1) ** 0.5) | |
| self.is_scale_input_called = True | |
| return sample | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 | |
| if self.config.timestep_spacing == "linspace": | |
| timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[ | |
| ::-1 | |
| ].copy() | |
| elif self.config.timestep_spacing == "leading": | |
| step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) | |
| timesteps += self.config.steps_offset | |
| elif self.config.timestep_spacing == "trailing": | |
| step_ratio = self.config.num_train_timesteps / self.num_inference_steps | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) | |
| timesteps -= 1 | |
| else: | |
| raise ValueError( | |
| f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." | |
| ) | |
| sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
| sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | |
| sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | |
| self.sigmas = torch.from_numpy(sigmas).to(device=device) | |
| self.timesteps = torch.from_numpy(timesteps).to(device=device) | |
| self._step_index = None | |
| self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
| def _init_step_index(self, timestep): | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| index_candidates = (self.timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| if len(index_candidates) > 1: | |
| step_index = index_candidates[1] | |
| else: | |
| step_index = index_candidates[0] | |
| self._step_index = step_index.item() | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: torch.FloatTensor, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`): | |
| Whether or not to return a | |
| [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple. | |
| Returns: | |
| [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, | |
| [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned, | |
| otherwise a tuple is returned where the first element is the sample tensor. | |
| """ | |
| if ( | |
| isinstance(timestep, int) | |
| or isinstance(timestep, torch.IntTensor) | |
| or isinstance(timestep, torch.LongTensor) | |
| ): | |
| raise ValueError( | |
| ( | |
| "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | |
| " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | |
| " one of the `scheduler.timesteps` as a timestep." | |
| ), | |
| ) | |
| if not self.is_scale_input_called: | |
| logger.warning( | |
| "The `scale_model_input` function should be called before `step` to ensure correct denoising. " | |
| "See `StableDiffusionPipeline` for a usage example." | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| sigma = self.sigmas[self.step_index] | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = sample - sigma * model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| # * c_out + input * c_skip | |
| pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) | |
| elif self.config.prediction_type == "sample": | |
| raise NotImplementedError("prediction_type not implemented yet: sample") | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" | |
| ) | |
| sigma_from = self.sigmas[self.step_index] | |
| sigma_to = self.sigmas[self.step_index + 1] | |
| sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 | |
| sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 | |
| # 2. Convert to an ODE derivative | |
| derivative = (sample - pred_original_sample) / sigma | |
| dt = sigma_down - sigma | |
| prev_sample = sample + derivative * dt | |
| device = model_output.device | |
| noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) | |
| prev_sample = prev_sample + noise * sigma_up | |
| # Cast sample back to model compatible dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return EulerAncestralDiscreteSchedulerOutput( | |
| prev_sample=prev_sample, pred_original_sample=pred_original_sample | |
| ) | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.FloatTensor, | |
| ) -> torch.FloatTensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
| if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
| timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| noisy_samples = original_samples + noise * sigma | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |