Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ..utils import USE_PEFT_BACKEND | |
| from .lora import LoRACompatibleConv | |
| from .normalization import RMSNorm | |
| class Upsample1D(nn.Module): | |
| """A 1D upsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| use_conv_transpose (`bool`, default `False`): | |
| option to use a convolution transpose. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| name (`str`, default `conv`): | |
| name of the upsampling 1D layer. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| use_conv: bool = False, | |
| use_conv_transpose: bool = False, | |
| out_channels: Optional[int] = None, | |
| name: str = "conv", | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_conv_transpose = use_conv_transpose | |
| self.name = name | |
| self.conv = None | |
| if use_conv_transpose: | |
| self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) | |
| elif use_conv: | |
| self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| assert inputs.shape[1] == self.channels | |
| if self.use_conv_transpose: | |
| return self.conv(inputs) | |
| outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest") | |
| if self.use_conv: | |
| outputs = self.conv(outputs) | |
| return outputs | |
| class Upsample2D(nn.Module): | |
| """A 2D upsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| use_conv_transpose (`bool`, default `False`): | |
| option to use a convolution transpose. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| name (`str`, default `conv`): | |
| name of the upsampling 2D layer. | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| use_conv: bool = False, | |
| use_conv_transpose: bool = False, | |
| out_channels: Optional[int] = None, | |
| name: str = "conv", | |
| kernel_size: Optional[int] = None, | |
| padding=1, | |
| norm_type=None, | |
| eps=None, | |
| elementwise_affine=None, | |
| bias=True, | |
| interpolate=True, | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_conv_transpose = use_conv_transpose | |
| self.name = name | |
| self.interpolate = interpolate | |
| conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
| if norm_type == "ln_norm": | |
| self.norm = nn.LayerNorm(channels, eps, elementwise_affine) | |
| elif norm_type == "rms_norm": | |
| self.norm = RMSNorm(channels, eps, elementwise_affine) | |
| elif norm_type is None: | |
| self.norm = None | |
| else: | |
| raise ValueError(f"unknown norm_type: {norm_type}") | |
| conv = None | |
| if use_conv_transpose: | |
| if kernel_size is None: | |
| kernel_size = 4 | |
| conv = nn.ConvTranspose2d( | |
| channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias | |
| ) | |
| elif use_conv: | |
| if kernel_size is None: | |
| kernel_size = 3 | |
| conv = conv_cls(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias) | |
| # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
| if name == "conv": | |
| self.conv = conv | |
| else: | |
| self.Conv2d_0 = conv | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| output_size: Optional[int] = None, | |
| scale: float = 1.0, | |
| ) -> torch.FloatTensor: | |
| assert hidden_states.shape[1] == self.channels | |
| if self.norm is not None: | |
| hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| if self.use_conv_transpose: | |
| return self.conv(hidden_states) | |
| # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
| # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
| # https://github.com/pytorch/pytorch/issues/86679 | |
| dtype = hidden_states.dtype | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(torch.float32) | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| hidden_states = hidden_states.contiguous() | |
| # if `output_size` is passed we force the interpolation output | |
| # size and do not make use of `scale_factor=2` | |
| if self.interpolate: | |
| if output_size is None: | |
| hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
| else: | |
| hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
| # If the input is bfloat16, we cast back to bfloat16 | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(dtype) | |
| # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
| if self.use_conv: | |
| if self.name == "conv": | |
| if isinstance(self.conv, LoRACompatibleConv) and not USE_PEFT_BACKEND: | |
| hidden_states = self.conv(hidden_states, scale) | |
| else: | |
| hidden_states = self.conv(hidden_states) | |
| else: | |
| if isinstance(self.Conv2d_0, LoRACompatibleConv) and not USE_PEFT_BACKEND: | |
| hidden_states = self.Conv2d_0(hidden_states, scale) | |
| else: | |
| hidden_states = self.Conv2d_0(hidden_states) | |
| return hidden_states | |
| class FirUpsample2D(nn.Module): | |
| """A 2D FIR upsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`, optional): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| fir_kernel (`tuple`, default `(1, 3, 3, 1)`): | |
| kernel for the FIR filter. | |
| """ | |
| def __init__( | |
| self, | |
| channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| use_conv: bool = False, | |
| fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1), | |
| ): | |
| super().__init__() | |
| out_channels = out_channels if out_channels else channels | |
| if use_conv: | |
| self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| self.use_conv = use_conv | |
| self.fir_kernel = fir_kernel | |
| self.out_channels = out_channels | |
| def _upsample_2d( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| weight: Optional[torch.FloatTensor] = None, | |
| kernel: Optional[torch.FloatTensor] = None, | |
| factor: int = 2, | |
| gain: float = 1, | |
| ) -> torch.FloatTensor: | |
| """Fused `upsample_2d()` followed by `Conv2d()`. | |
| Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
| efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of | |
| arbitrary order. | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
| weight (`torch.FloatTensor`, *optional*): | |
| Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be | |
| performed by `inChannels = x.shape[0] // numGroups`. | |
| kernel (`torch.FloatTensor`, *optional*): | |
| FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which | |
| corresponds to nearest-neighbor upsampling. | |
| factor (`int`, *optional*): Integer upsampling factor (default: 2). | |
| gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0). | |
| Returns: | |
| output (`torch.FloatTensor`): | |
| Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same | |
| datatype as `hidden_states`. | |
| """ | |
| assert isinstance(factor, int) and factor >= 1 | |
| # Setup filter kernel. | |
| if kernel is None: | |
| kernel = [1] * factor | |
| # setup kernel | |
| kernel = torch.tensor(kernel, dtype=torch.float32) | |
| if kernel.ndim == 1: | |
| kernel = torch.outer(kernel, kernel) | |
| kernel /= torch.sum(kernel) | |
| kernel = kernel * (gain * (factor**2)) | |
| if self.use_conv: | |
| convH = weight.shape[2] | |
| convW = weight.shape[3] | |
| inC = weight.shape[1] | |
| pad_value = (kernel.shape[0] - factor) - (convW - 1) | |
| stride = (factor, factor) | |
| # Determine data dimensions. | |
| output_shape = ( | |
| (hidden_states.shape[2] - 1) * factor + convH, | |
| (hidden_states.shape[3] - 1) * factor + convW, | |
| ) | |
| output_padding = ( | |
| output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, | |
| output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW, | |
| ) | |
| assert output_padding[0] >= 0 and output_padding[1] >= 0 | |
| num_groups = hidden_states.shape[1] // inC | |
| # Transpose weights. | |
| weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) | |
| weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) | |
| weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) | |
| inverse_conv = F.conv_transpose2d( | |
| hidden_states, | |
| weight, | |
| stride=stride, | |
| output_padding=output_padding, | |
| padding=0, | |
| ) | |
| output = upfirdn2d_native( | |
| inverse_conv, | |
| torch.tensor(kernel, device=inverse_conv.device), | |
| pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1), | |
| ) | |
| else: | |
| pad_value = kernel.shape[0] - factor | |
| output = upfirdn2d_native( | |
| hidden_states, | |
| torch.tensor(kernel, device=hidden_states.device), | |
| up=factor, | |
| pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), | |
| ) | |
| return output | |
| def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
| if self.use_conv: | |
| height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) | |
| height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
| else: | |
| height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) | |
| return height | |
| class KUpsample2D(nn.Module): | |
| r"""A 2D K-upsampling layer. | |
| Parameters: | |
| pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use. | |
| """ | |
| def __init__(self, pad_mode: str = "reflect"): | |
| super().__init__() | |
| self.pad_mode = pad_mode | |
| kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2 | |
| self.pad = kernel_1d.shape[1] // 2 - 1 | |
| self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode) | |
| weight = inputs.new_zeros( | |
| [ | |
| inputs.shape[1], | |
| inputs.shape[1], | |
| self.kernel.shape[0], | |
| self.kernel.shape[1], | |
| ] | |
| ) | |
| indices = torch.arange(inputs.shape[1], device=inputs.device) | |
| kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1) | |
| weight[indices, indices] = kernel | |
| return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1) | |
| def upfirdn2d_native( | |
| tensor: torch.Tensor, | |
| kernel: torch.Tensor, | |
| up: int = 1, | |
| down: int = 1, | |
| pad: Tuple[int, int] = (0, 0), | |
| ) -> torch.Tensor: | |
| up_x = up_y = up | |
| down_x = down_y = down | |
| pad_x0 = pad_y0 = pad[0] | |
| pad_x1 = pad_y1 = pad[1] | |
| _, channel, in_h, in_w = tensor.shape | |
| tensor = tensor.reshape(-1, in_h, in_w, 1) | |
| _, in_h, in_w, minor = tensor.shape | |
| kernel_h, kernel_w = kernel.shape | |
| out = tensor.view(-1, in_h, 1, in_w, 1, minor) | |
| out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) | |
| out = out.view(-1, in_h * up_y, in_w * up_x, minor) | |
| out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
| out = out.to(tensor.device) # Move back to mps if necessary | |
| out = out[ | |
| :, | |
| max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), | |
| max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), | |
| :, | |
| ] | |
| out = out.permute(0, 3, 1, 2) | |
| out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
| w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
| out = F.conv2d(out, w) | |
| out = out.reshape( | |
| -1, | |
| minor, | |
| in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
| in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
| ) | |
| out = out.permute(0, 2, 3, 1) | |
| out = out[:, ::down_y, ::down_x, :] | |
| out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 | |
| out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 | |
| return out.view(-1, channel, out_h, out_w) | |
| def upsample_2d( | |
| hidden_states: torch.FloatTensor, | |
| kernel: Optional[torch.FloatTensor] = None, | |
| factor: int = 2, | |
| gain: float = 1, | |
| ) -> torch.FloatTensor: | |
| r"""Upsample2D a batch of 2D images with the given filter. | |
| Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given | |
| filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified | |
| `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is | |
| a: multiple of the upsampling factor. | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
| kernel (`torch.FloatTensor`, *optional*): | |
| FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which | |
| corresponds to nearest-neighbor upsampling. | |
| factor (`int`, *optional*, default to `2`): | |
| Integer upsampling factor. | |
| gain (`float`, *optional*, default to `1.0`): | |
| Scaling factor for signal magnitude (default: 1.0). | |
| Returns: | |
| output (`torch.FloatTensor`): | |
| Tensor of the shape `[N, C, H * factor, W * factor]` | |
| """ | |
| assert isinstance(factor, int) and factor >= 1 | |
| if kernel is None: | |
| kernel = [1] * factor | |
| kernel = torch.tensor(kernel, dtype=torch.float32) | |
| if kernel.ndim == 1: | |
| kernel = torch.outer(kernel, kernel) | |
| kernel /= torch.sum(kernel) | |
| kernel = kernel * (gain * (factor**2)) | |
| pad_value = kernel.shape[0] - factor | |
| output = upfirdn2d_native( | |
| hidden_states, | |
| kernel.to(device=hidden_states.device), | |
| up=factor, | |
| pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), | |
| ) | |
| return output | |