Spaces:
Running
on
Zero
Running
on
Zero
| import inspect | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.utils.checkpoint | |
| from ...models import UNet2DModel, VQModel | |
| from ...schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from ...utils import PIL_INTERPOLATION | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| def preprocess(image): | |
| w, h = image.size | |
| w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
| image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return 2.0 * image - 1.0 | |
| class LDMSuperResolutionPipeline(DiffusionPipeline): | |
| r""" | |
| A pipeline for image super-resolution using latent diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Parameters: | |
| vqvae ([`VQModel`]): | |
| Vector-quantized (VQ) model to encode and decode images to and from latent representations. | |
| unet ([`UNet2DModel`]): | |
| A `UNet2DModel` to denoise the encoded image. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], | |
| [`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`]. | |
| """ | |
| def __init__( | |
| self, | |
| vqvae: VQModel, | |
| unet: UNet2DModel, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) | |
| def __call__( | |
| self, | |
| image: Union[torch.Tensor, PIL.Image.Image] = None, | |
| batch_size: Optional[int] = 1, | |
| num_inference_steps: Optional[int] = 100, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| ) -> Union[Tuple, ImagePipelineOutput]: | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`torch.Tensor` or `PIL.Image.Image`): | |
| `Image` or tensor representing an image batch to be used as the starting point for the process. | |
| batch_size (`int`, *optional*, defaults to 1): | |
| Number of images to generate. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. | |
| Example: | |
| ```py | |
| >>> import requests | |
| >>> from PIL import Image | |
| >>> from io import BytesIO | |
| >>> from diffusers import LDMSuperResolutionPipeline | |
| >>> import torch | |
| >>> # load model and scheduler | |
| >>> pipeline = LDMSuperResolutionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages") | |
| >>> pipeline = pipeline.to("cuda") | |
| >>> # let's download an image | |
| >>> url = ( | |
| ... "https://user-images.githubusercontent.com/38061659/199705896-b48e17b8-b231-47cd-a270-4ffa5a93fa3e.png" | |
| ... ) | |
| >>> response = requests.get(url) | |
| >>> low_res_img = Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> low_res_img = low_res_img.resize((128, 128)) | |
| >>> # run pipeline in inference (sample random noise and denoise) | |
| >>> upscaled_image = pipeline(low_res_img, num_inference_steps=100, eta=1).images[0] | |
| >>> # save image | |
| >>> upscaled_image.save("ldm_generated_image.png") | |
| ``` | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated images | |
| """ | |
| if isinstance(image, PIL.Image.Image): | |
| batch_size = 1 | |
| elif isinstance(image, torch.Tensor): | |
| batch_size = image.shape[0] | |
| else: | |
| raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(image)}") | |
| if isinstance(image, PIL.Image.Image): | |
| image = preprocess(image) | |
| height, width = image.shape[-2:] | |
| # in_channels should be 6: 3 for latents, 3 for low resolution image | |
| latents_shape = (batch_size, self.unet.config.in_channels // 2, height, width) | |
| latents_dtype = next(self.unet.parameters()).dtype | |
| latents = randn_tensor(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) | |
| image = image.to(device=self.device, dtype=latents_dtype) | |
| # set timesteps and move to the correct device | |
| self.scheduler.set_timesteps(num_inference_steps, device=self.device) | |
| timesteps_tensor = self.scheduler.timesteps | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_kwargs = {} | |
| if accepts_eta: | |
| extra_kwargs["eta"] = eta | |
| for t in self.progress_bar(timesteps_tensor): | |
| # concat latents and low resolution image in the channel dimension. | |
| latents_input = torch.cat([latents, image], dim=1) | |
| latents_input = self.scheduler.scale_model_input(latents_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latents_input, t).sample | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample | |
| # decode the image latents with the VQVAE | |
| image = self.vqvae.decode(latents).sample | |
| image = torch.clamp(image, -1.0, 1.0) | |
| image = image / 2 + 0.5 | |
| image = image.cpu().permute(0, 2, 3, 1).numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |