Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 DiffEdit Authors and Pix2Pix Zero Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
| from ...configuration_utils import FrozenDict | |
| from ...image_processor import VaeImageProcessor | |
| from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
| from ...models import AutoencoderKL, UNet2DConditionModel | |
| from ...models.lora import adjust_lora_scale_text_encoder | |
| from ...schedulers import DDIMInverseScheduler, KarrasDiffusionSchedulers | |
| from ...utils import ( | |
| PIL_INTERPOLATION, | |
| USE_PEFT_BACKEND, | |
| BaseOutput, | |
| deprecate, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline | |
| from ..stable_diffusion import StableDiffusionPipelineOutput | |
| from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class DiffEditInversionPipelineOutput(BaseOutput): | |
| """ | |
| Output class for Stable Diffusion pipelines. | |
| Args: | |
| latents (`torch.FloatTensor`) | |
| inverted latents tensor | |
| images (`List[PIL.Image.Image]` or `np.ndarray`) | |
| List of denoised PIL images of length `num_timesteps * batch_size` or numpy array of shape `(num_timesteps, | |
| batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the | |
| diffusion pipeline. | |
| """ | |
| latents: torch.FloatTensor | |
| images: Union[List[PIL.Image.Image], np.ndarray] | |
| EXAMPLE_DOC_STRING = """ | |
| ```py | |
| >>> import PIL | |
| >>> import requests | |
| >>> import torch | |
| >>> from io import BytesIO | |
| >>> from diffusers import StableDiffusionDiffEditPipeline | |
| >>> def download_image(url): | |
| ... response = requests.get(url) | |
| ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" | |
| >>> init_image = download_image(img_url).resize((768, 768)) | |
| >>> pipe = StableDiffusionDiffEditPipeline.from_pretrained( | |
| ... "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
| >>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) | |
| >>> pipeline.enable_model_cpu_offload() | |
| >>> mask_prompt = "A bowl of fruits" | |
| >>> prompt = "A bowl of pears" | |
| >>> mask_image = pipe.generate_mask(image=init_image, source_prompt=prompt, target_prompt=mask_prompt) | |
| >>> image_latents = pipe.invert(image=init_image, prompt=mask_prompt).latents | |
| >>> image = pipe(prompt=prompt, mask_image=mask_image, image_latents=image_latents).images[0] | |
| ``` | |
| """ | |
| EXAMPLE_INVERT_DOC_STRING = """ | |
| ```py | |
| >>> import PIL | |
| >>> import requests | |
| >>> import torch | |
| >>> from io import BytesIO | |
| >>> from diffusers import StableDiffusionDiffEditPipeline | |
| >>> def download_image(url): | |
| ... response = requests.get(url) | |
| ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" | |
| >>> init_image = download_image(img_url).resize((768, 768)) | |
| >>> pipe = StableDiffusionDiffEditPipeline.from_pretrained( | |
| ... "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
| >>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) | |
| >>> pipeline.enable_model_cpu_offload() | |
| >>> prompt = "A bowl of fruits" | |
| >>> inverted_latents = pipe.invert(image=init_image, prompt=prompt).latents | |
| ``` | |
| """ | |
| def auto_corr_loss(hidden_states, generator=None): | |
| reg_loss = 0.0 | |
| for i in range(hidden_states.shape[0]): | |
| for j in range(hidden_states.shape[1]): | |
| noise = hidden_states[i : i + 1, j : j + 1, :, :] | |
| while True: | |
| roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() | |
| reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 | |
| reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 | |
| if noise.shape[2] <= 8: | |
| break | |
| noise = torch.nn.functional.avg_pool2d(noise, kernel_size=2) | |
| return reg_loss | |
| def kl_divergence(hidden_states): | |
| return hidden_states.var() + hidden_states.mean() ** 2 - 1 - torch.log(hidden_states.var() + 1e-7) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
| def preprocess(image): | |
| deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead" | |
| deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False) | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
| image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| def preprocess_mask(mask, batch_size: int = 1): | |
| if not isinstance(mask, torch.Tensor): | |
| # preprocess mask | |
| if isinstance(mask, PIL.Image.Image) or isinstance(mask, np.ndarray): | |
| mask = [mask] | |
| if isinstance(mask, list): | |
| if isinstance(mask[0], PIL.Image.Image): | |
| mask = [np.array(m.convert("L")).astype(np.float32) / 255.0 for m in mask] | |
| if isinstance(mask[0], np.ndarray): | |
| mask = np.stack(mask, axis=0) if mask[0].ndim < 3 else np.concatenate(mask, axis=0) | |
| mask = torch.from_numpy(mask) | |
| elif isinstance(mask[0], torch.Tensor): | |
| mask = torch.stack(mask, dim=0) if mask[0].ndim < 3 else torch.cat(mask, dim=0) | |
| # Batch and add channel dim for single mask | |
| if mask.ndim == 2: | |
| mask = mask.unsqueeze(0).unsqueeze(0) | |
| # Batch single mask or add channel dim | |
| if mask.ndim == 3: | |
| # Single batched mask, no channel dim or single mask not batched but channel dim | |
| if mask.shape[0] == 1: | |
| mask = mask.unsqueeze(0) | |
| # Batched masks no channel dim | |
| else: | |
| mask = mask.unsqueeze(1) | |
| # Check mask shape | |
| if batch_size > 1: | |
| if mask.shape[0] == 1: | |
| mask = torch.cat([mask] * batch_size) | |
| elif mask.shape[0] > 1 and mask.shape[0] != batch_size: | |
| raise ValueError( | |
| f"`mask_image` with batch size {mask.shape[0]} cannot be broadcasted to batch size {batch_size} " | |
| f"inferred by prompt inputs" | |
| ) | |
| if mask.shape[1] != 1: | |
| raise ValueError(f"`mask_image` must have 1 channel, but has {mask.shape[1]} channels") | |
| # Check mask is in [0, 1] | |
| if mask.min() < 0 or mask.max() > 1: | |
| raise ValueError("`mask_image` should be in [0, 1] range") | |
| # Binarize mask | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| return mask | |
| class StableDiffusionDiffEditPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): | |
| r""" | |
| <Tip warning={true}> | |
| This is an experimental feature! | |
| </Tip> | |
| Pipeline for text-guided image inpainting using Stable Diffusion and DiffEdit. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading and saving methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
| inverse_scheduler ([`DDIMInverseScheduler`]): | |
| A scheduler to be used in combination with `unet` to fill in the unmasked part of the input latents. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->unet->vae" | |
| _optional_components = ["safety_checker", "feature_extractor", "inverse_scheduler"] | |
| _exclude_from_cpu_offload = ["safety_checker"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| inverse_scheduler: DDIMInverseScheduler, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration" | |
| " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" | |
| " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" | |
| " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" | |
| " Hub, it would be very nice if you could open a Pull request for the" | |
| " `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["skip_prk_steps"] = True | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| inverse_scheduler=inverse_scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| **kwargs, | |
| ): | |
| deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
| deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
| prompt_embeds_tuple = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| **kwargs, | |
| ) | |
| # concatenate for backwards comp | |
| prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
| return prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| lora_scale (`float`, *optional*): | |
| A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| if clip_skip is None: | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
| deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def check_inputs( | |
| self, | |
| prompt, | |
| strength, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if (strength is None) or (strength is not None and (strength < 0 or strength > 1)): | |
| raise ValueError( | |
| f"The value of `strength` should in [0.0, 1.0] but is, but is {strength} of type {type(strength)}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| def check_source_inputs( | |
| self, | |
| source_prompt=None, | |
| source_negative_prompt=None, | |
| source_prompt_embeds=None, | |
| source_negative_prompt_embeds=None, | |
| ): | |
| if source_prompt is not None and source_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `source_prompt`: {source_prompt} and `source_prompt_embeds`: {source_prompt_embeds}." | |
| " Please make sure to only forward one of the two." | |
| ) | |
| elif source_prompt is None and source_prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `source_image` or `source_prompt_embeds`. Cannot leave all both of the arguments undefined." | |
| ) | |
| elif source_prompt is not None and ( | |
| not isinstance(source_prompt, str) and not isinstance(source_prompt, list) | |
| ): | |
| raise ValueError(f"`source_prompt` has to be of type `str` or `list` but is {type(source_prompt)}") | |
| if source_negative_prompt is not None and source_negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `source_negative_prompt`: {source_negative_prompt} and `source_negative_prompt_embeds`:" | |
| f" {source_negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if source_prompt_embeds is not None and source_negative_prompt_embeds is not None: | |
| if source_prompt_embeds.shape != source_negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`source_prompt_embeds` and `source_negative_prompt_embeds` must have the same shape when passed" | |
| f" directly, but got: `source_prompt_embeds` {source_prompt_embeds.shape} !=" | |
| f" `source_negative_prompt_embeds` {source_negative_prompt_embeds.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| return timesteps, num_inference_steps - t_start | |
| def get_inverse_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| # safety for t_start overflow to prevent empty timsteps slice | |
| if t_start == 0: | |
| return self.inverse_scheduler.timesteps, num_inference_steps | |
| timesteps = self.inverse_scheduler.timesteps[:-t_start] | |
| return timesteps, num_inference_steps - t_start | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| if image.shape[1] == 4: | |
| latents = image | |
| else: | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if isinstance(generator, list): | |
| latents = [ | |
| self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0) | |
| else: | |
| latents = self.vae.encode(image).latent_dist.sample(generator) | |
| latents = self.vae.config.scaling_factor * latents | |
| if batch_size != latents.shape[0]: | |
| if batch_size % latents.shape[0] == 0: | |
| # expand image_latents for batch_size | |
| deprecation_message = ( | |
| f"You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial" | |
| " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
| " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
| " your script to pass as many initial images as text prompts to suppress this warning." | |
| ) | |
| deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
| additional_latents_per_image = batch_size // latents.shape[0] | |
| latents = torch.cat([latents] * additional_latents_per_image, dim=0) | |
| else: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| latents = torch.cat([latents], dim=0) | |
| return latents | |
| def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int): | |
| pred_type = self.inverse_scheduler.config.prediction_type | |
| alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep] | |
| beta_prod_t = 1 - alpha_prod_t | |
| if pred_type == "epsilon": | |
| return model_output | |
| elif pred_type == "sample": | |
| return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5) | |
| elif pred_type == "v_prediction": | |
| return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`" | |
| ) | |
| def generate_mask( | |
| self, | |
| image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| target_prompt: Optional[Union[str, List[str]]] = None, | |
| target_negative_prompt: Optional[Union[str, List[str]]] = None, | |
| target_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| target_negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| source_prompt: Optional[Union[str, List[str]]] = None, | |
| source_negative_prompt: Optional[Union[str, List[str]]] = None, | |
| source_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| source_negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| num_maps_per_mask: Optional[int] = 10, | |
| mask_encode_strength: Optional[float] = 0.5, | |
| mask_thresholding_ratio: Optional[float] = 3.0, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "np", | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ): | |
| r""" | |
| Generate a latent mask given a mask prompt, a target prompt, and an image. | |
| Args: | |
| image (`PIL.Image.Image`): | |
| `Image` or tensor representing an image batch to be used for computing the mask. | |
| target_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide semantic mask generation. If not defined, you need to pass | |
| `prompt_embeds`. | |
| target_negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| target_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| target_negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| source_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide semantic mask generation using DiffEdit. If not defined, you need to | |
| pass `source_prompt_embeds` or `source_image` instead. | |
| source_negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide semantic mask generation away from using DiffEdit. If not defined, you | |
| need to pass `source_negative_prompt_embeds` or `source_image` instead. | |
| source_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings to guide the semantic mask generation. Can be used to easily tweak text | |
| inputs (prompt weighting). If not provided, text embeddings are generated from `source_prompt` input | |
| argument. | |
| source_negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings to negatively guide the semantic mask generation. Can be used to easily | |
| tweak text inputs (prompt weighting). If not provided, text embeddings are generated from | |
| `source_negative_prompt` input argument. | |
| num_maps_per_mask (`int`, *optional*, defaults to 10): | |
| The number of noise maps sampled to generate the semantic mask using DiffEdit. | |
| mask_encode_strength (`float`, *optional*, defaults to 0.5): | |
| The strength of the noise maps sampled to generate the semantic mask using DiffEdit. Must be between 0 | |
| and 1. | |
| mask_thresholding_ratio (`float`, *optional*, defaults to 3.0): | |
| The maximum multiple of the mean absolute difference used to clamp the semantic guidance map before | |
| mask binarization. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the | |
| [`~models.attention_processor.AttnProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| Examples: | |
| Returns: | |
| `List[PIL.Image.Image]` or `np.array`: | |
| When returning a `List[PIL.Image.Image]`, the list consists of a batch of single-channel binary images | |
| with dimensions `(height // self.vae_scale_factor, width // self.vae_scale_factor)`. If it's | |
| `np.array`, the shape is `(batch_size, height // self.vae_scale_factor, width // | |
| self.vae_scale_factor)`. | |
| """ | |
| # 1. Check inputs (Provide dummy argument for callback_steps) | |
| self.check_inputs( | |
| target_prompt, | |
| mask_encode_strength, | |
| 1, | |
| target_negative_prompt, | |
| target_prompt_embeds, | |
| target_negative_prompt_embeds, | |
| ) | |
| self.check_source_inputs( | |
| source_prompt, | |
| source_negative_prompt, | |
| source_prompt_embeds, | |
| source_negative_prompt_embeds, | |
| ) | |
| if (num_maps_per_mask is None) or ( | |
| num_maps_per_mask is not None and (not isinstance(num_maps_per_mask, int) or num_maps_per_mask <= 0) | |
| ): | |
| raise ValueError( | |
| f"`num_maps_per_mask` has to be a positive integer but is {num_maps_per_mask} of type" | |
| f" {type(num_maps_per_mask)}." | |
| ) | |
| if mask_thresholding_ratio is None or mask_thresholding_ratio <= 0: | |
| raise ValueError( | |
| f"`mask_thresholding_ratio` has to be positive but is {mask_thresholding_ratio} of type" | |
| f" {type(mask_thresholding_ratio)}." | |
| ) | |
| # 2. Define call parameters | |
| if target_prompt is not None and isinstance(target_prompt, str): | |
| batch_size = 1 | |
| elif target_prompt is not None and isinstance(target_prompt, list): | |
| batch_size = len(target_prompt) | |
| else: | |
| batch_size = target_prompt_embeds.shape[0] | |
| if cross_attention_kwargs is None: | |
| cross_attention_kwargs = {} | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompts | |
| (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None) | |
| target_negative_prompt_embeds, target_prompt_embeds = self.encode_prompt( | |
| target_prompt, | |
| device, | |
| num_maps_per_mask, | |
| do_classifier_free_guidance, | |
| target_negative_prompt, | |
| prompt_embeds=target_prompt_embeds, | |
| negative_prompt_embeds=target_negative_prompt_embeds, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_classifier_free_guidance: | |
| target_prompt_embeds = torch.cat([target_negative_prompt_embeds, target_prompt_embeds]) | |
| source_negative_prompt_embeds, source_prompt_embeds = self.encode_prompt( | |
| source_prompt, | |
| device, | |
| num_maps_per_mask, | |
| do_classifier_free_guidance, | |
| source_negative_prompt, | |
| prompt_embeds=source_prompt_embeds, | |
| negative_prompt_embeds=source_negative_prompt_embeds, | |
| ) | |
| if do_classifier_free_guidance: | |
| source_prompt_embeds = torch.cat([source_negative_prompt_embeds, source_prompt_embeds]) | |
| # 4. Preprocess image | |
| image = self.image_processor.preprocess(image).repeat_interleave(num_maps_per_mask, dim=0) | |
| # 5. Set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, _ = self.get_timesteps(num_inference_steps, mask_encode_strength, device) | |
| encode_timestep = timesteps[0] | |
| # 6. Prepare image latents and add noise with specified strength | |
| image_latents = self.prepare_image_latents( | |
| image, batch_size * num_maps_per_mask, self.vae.dtype, device, generator | |
| ) | |
| noise = randn_tensor(image_latents.shape, generator=generator, device=device, dtype=self.vae.dtype) | |
| image_latents = self.scheduler.add_noise(image_latents, noise, encode_timestep) | |
| latent_model_input = torch.cat([image_latents] * (4 if do_classifier_free_guidance else 2)) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, encode_timestep) | |
| # 7. Predict the noise residual | |
| prompt_embeds = torch.cat([source_prompt_embeds, target_prompt_embeds]) | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| encode_timestep, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| if do_classifier_free_guidance: | |
| noise_pred_neg_src, noise_pred_source, noise_pred_uncond, noise_pred_target = noise_pred.chunk(4) | |
| noise_pred_source = noise_pred_neg_src + guidance_scale * (noise_pred_source - noise_pred_neg_src) | |
| noise_pred_target = noise_pred_uncond + guidance_scale * (noise_pred_target - noise_pred_uncond) | |
| else: | |
| noise_pred_source, noise_pred_target = noise_pred.chunk(2) | |
| # 8. Compute the mask from the absolute difference of predicted noise residuals | |
| # TODO: Consider smoothing mask guidance map | |
| mask_guidance_map = ( | |
| torch.abs(noise_pred_target - noise_pred_source) | |
| .reshape(batch_size, num_maps_per_mask, *noise_pred_target.shape[-3:]) | |
| .mean([1, 2]) | |
| ) | |
| clamp_magnitude = mask_guidance_map.mean() * mask_thresholding_ratio | |
| semantic_mask_image = mask_guidance_map.clamp(0, clamp_magnitude) / clamp_magnitude | |
| semantic_mask_image = torch.where(semantic_mask_image <= 0.5, 0, 1) | |
| mask_image = semantic_mask_image.cpu().numpy() | |
| # 9. Convert to Numpy array or PIL. | |
| if output_type == "pil": | |
| mask_image = self.image_processor.numpy_to_pil(mask_image) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return mask_image | |
| def invert( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| num_inference_steps: int = 50, | |
| inpaint_strength: float = 0.8, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| decode_latents: bool = False, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| lambda_auto_corr: float = 20.0, | |
| lambda_kl: float = 20.0, | |
| num_reg_steps: int = 0, | |
| num_auto_corr_rolls: int = 5, | |
| ): | |
| r""" | |
| Generate inverted latents given a prompt and image. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`PIL.Image.Image`): | |
| `Image` or tensor representing an image batch to produce the inverted latents guided by `prompt`. | |
| inpaint_strength (`float`, *optional*, defaults to 0.8): | |
| Indicates extent of the noising process to run latent inversion. Must be between 0 and 1. When | |
| `inpaint_strength` is 1, the inversion process is run for the full number of iterations specified in | |
| `num_inference_steps`. `image` is used as a reference for the inversion process, and adding more noise | |
| increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| decode_latents (`bool`, *optional*, defaults to `False`): | |
| Whether or not to decode the inverted latents into a generated image. Setting this argument to `True` | |
| decodes all inverted latents for each timestep into a list of generated images. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.DiffEditInversionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the | |
| [`~models.attention_processor.AttnProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| lambda_auto_corr (`float`, *optional*, defaults to 20.0): | |
| Lambda parameter to control auto correction. | |
| lambda_kl (`float`, *optional*, defaults to 20.0): | |
| Lambda parameter to control Kullback-Leibler divergence output. | |
| num_reg_steps (`int`, *optional*, defaults to 0): | |
| Number of regularization loss steps. | |
| num_auto_corr_rolls (`int`, *optional*, defaults to 5): | |
| Number of auto correction roll steps. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] or | |
| `tuple`: | |
| If `return_dict` is `True`, | |
| [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is the inverted latents tensors | |
| ordered by increasing noise, and the second is the corresponding decoded images if `decode_latents` is | |
| `True`, otherwise `None`. | |
| """ | |
| # 1. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| inpaint_strength, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| if image is None: | |
| raise ValueError("`image` input cannot be undefined.") | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if cross_attention_kwargs is None: | |
| cross_attention_kwargs = {} | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Preprocess image | |
| image = self.image_processor.preprocess(image) | |
| # 4. Prepare latent variables | |
| num_images_per_prompt = 1 | |
| latents = self.prepare_image_latents( | |
| image, batch_size * num_images_per_prompt, self.vae.dtype, device, generator | |
| ) | |
| # 5. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # 6. Prepare timesteps | |
| self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_inverse_timesteps(num_inference_steps, inpaint_strength, device) | |
| # 7. Noising loop where we obtain the intermediate noised latent image for each timestep. | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order | |
| inverted_latents = [] | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # regularization of the noise prediction (not in original code or paper but borrowed from Pix2PixZero) | |
| if num_reg_steps > 0: | |
| with torch.enable_grad(): | |
| for _ in range(num_reg_steps): | |
| if lambda_auto_corr > 0: | |
| for _ in range(num_auto_corr_rolls): | |
| var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) | |
| # Derive epsilon from model output before regularizing to IID standard normal | |
| var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) | |
| l_ac = auto_corr_loss(var_epsilon, generator=generator) | |
| l_ac.backward() | |
| grad = var.grad.detach() / num_auto_corr_rolls | |
| noise_pred = noise_pred - lambda_auto_corr * grad | |
| if lambda_kl > 0: | |
| var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) | |
| # Derive epsilon from model output before regularizing to IID standard normal | |
| var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) | |
| l_kld = kl_divergence(var_epsilon) | |
| l_kld.backward() | |
| grad = var.grad.detach() | |
| noise_pred = noise_pred - lambda_kl * grad | |
| noise_pred = noise_pred.detach() | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample | |
| inverted_latents.append(latents.detach().clone()) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| assert len(inverted_latents) == len(timesteps) | |
| latents = torch.stack(list(reversed(inverted_latents)), 1) | |
| # 8. Post-processing | |
| image = None | |
| if decode_latents: | |
| image = self.decode_latents(latents.flatten(0, 1)) | |
| # 9. Convert to PIL. | |
| if decode_latents and output_type == "pil": | |
| image = self.image_processor.numpy_to_pil(image) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (latents, image) | |
| return DiffEditInversionPipelineOutput(latents=latents, images=image) | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| image_latents: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| inpaint_strength: Optional[float] = 0.8, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| clip_ckip: int = None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| mask_image (`PIL.Image.Image`): | |
| `Image` or tensor representing an image batch to mask the generated image. White pixels in the mask are | |
| repainted, while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a | |
| single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) | |
| instead of 3, so the expected shape would be `(B, 1, H, W)`. | |
| image_latents (`PIL.Image.Image` or `torch.FloatTensor`): | |
| Partially noised image latents from the inversion process to be used as inputs for image generation. | |
| inpaint_strength (`float`, *optional*, defaults to 0.8): | |
| Indicates extent to inpaint the masked area. Must be between 0 and 1. When `inpaint_strength` is 1, the | |
| denoising process is run on the masked area for the full number of iterations specified in | |
| `num_inference_steps`. `image_latents` is used as a reference for the masked area, and adding more | |
| noise to a region increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| # 1. Check inputs | |
| self.check_inputs( | |
| prompt, | |
| inpaint_strength, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| if mask_image is None: | |
| raise ValueError( | |
| "`mask_image` input cannot be undefined. Use `generate_mask()` to compute `mask_image` from text prompts." | |
| ) | |
| if image_latents is None: | |
| raise ValueError( | |
| "`image_latents` input cannot be undefined. Use `invert()` to compute `image_latents` from input images." | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if cross_attention_kwargs is None: | |
| cross_attention_kwargs = {} | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_ckip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # 4. Preprocess mask | |
| mask_image = preprocess_mask(mask_image, batch_size) | |
| latent_height, latent_width = mask_image.shape[-2:] | |
| mask_image = torch.cat([mask_image] * num_images_per_prompt) | |
| mask_image = mask_image.to(device=device, dtype=prompt_embeds.dtype) | |
| # 5. Set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, inpaint_strength, device) | |
| # 6. Preprocess image latents | |
| if isinstance(image_latents, list) and any(isinstance(l, torch.Tensor) and l.ndim == 5 for l in image_latents): | |
| image_latents = torch.cat(image_latents).detach() | |
| elif isinstance(image_latents, torch.Tensor) and image_latents.ndim == 5: | |
| image_latents = image_latents.detach() | |
| else: | |
| image_latents = self.image_processor.preprocess(image_latents).detach() | |
| latent_shape = (self.vae.config.latent_channels, latent_height, latent_width) | |
| if image_latents.shape[-3:] != latent_shape: | |
| raise ValueError( | |
| f"Each latent image in `image_latents` must have shape {latent_shape}, " | |
| f"but has shape {image_latents.shape[-3:]}" | |
| ) | |
| if image_latents.ndim == 4: | |
| image_latents = image_latents.reshape(batch_size, len(timesteps), *latent_shape) | |
| if image_latents.shape[:2] != (batch_size, len(timesteps)): | |
| raise ValueError( | |
| f"`image_latents` must have batch size {batch_size} with latent images from {len(timesteps)}" | |
| f" timesteps, but has batch size {image_latents.shape[0]} with latent images from" | |
| f" {image_latents.shape[1]} timesteps." | |
| ) | |
| image_latents = image_latents.transpose(0, 1).repeat_interleave(num_images_per_prompt, dim=1) | |
| image_latents = image_latents.to(device=device, dtype=prompt_embeds.dtype) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Denoising loop | |
| latents = image_latents[0].clone() | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # mask with inverted latents from appropriate timestep - use original image latent for last step | |
| latents = latents * mask_image + image_latents[i] * (1 - mask_image) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |