Spaces:
Running
on
Zero
Running
on
Zero
| # This file is autogenerated by the command `make fix-copies`, do not edit. | |
| from ..utils import DummyObject, requires_backends | |
| class AltDiffusionImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AltDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AmusedImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AmusedInpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AmusedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AnimateDiffPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AudioLDM2Pipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AudioLDM2ProjectionModel(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AudioLDM2UNet2DConditionModel(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class AudioLDMPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class CLIPImageProjection(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class CycleDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class IFImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class IFImg2ImgSuperResolutionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class IFInpaintingPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class IFInpaintingSuperResolutionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class IFPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class IFSuperResolutionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class ImageTextPipelineOutput(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class Kandinsky3Img2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class Kandinsky3Pipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyCombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyImg2ImgCombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyInpaintCombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyInpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyPriorPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22CombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22ControlnetImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22ControlnetPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22Img2ImgCombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22Img2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22InpaintCombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22InpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22Pipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22PriorEmb2EmbPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class KandinskyV22PriorPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class LatentConsistencyModelImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class LatentConsistencyModelPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class LDMTextToImagePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class MusicLDMPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class PaintByExamplePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class PixArtAlphaPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class SemanticStableDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class ShapEImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class ShapEPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionAdapterPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionAttendAndExcitePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionControlNetImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionControlNetInpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionControlNetPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionDiffEditPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionGLIGENPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionGLIGENTextImagePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionImageVariationPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionInpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionInstructPix2PixPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionLatentUpscalePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionLDM3DPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionModelEditingPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionPanoramaPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionParadigmsPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionPipelineSafe(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionPix2PixZeroPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionSAGPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionUpscalePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLAdapterPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLControlNetImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLControlNetInpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLControlNetPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLInpaintPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLInstructPix2PixPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableDiffusionXLPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableUnCLIPImg2ImgPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableUnCLIPPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class StableVideoDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class TextToVideoSDPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class TextToVideoZeroPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class TextToVideoZeroSDXLPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class UnCLIPImageVariationPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class UnCLIPPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class UniDiffuserModel(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class UniDiffuserPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class UniDiffuserTextDecoder(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class VersatileDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class VideoToVideoSDPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class VQDiffusionPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class WuerstchenCombinedPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class WuerstchenDecoderPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| class WuerstchenPriorPipeline(metaclass=DummyObject): | |
| _backends = ["torch", "transformers"] | |
| def __init__(self, *args, **kwargs): | |
| requires_backends(self, ["torch", "transformers"]) | |
| def from_config(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |
| def from_pretrained(cls, *args, **kwargs): | |
| requires_backends(cls, ["torch", "transformers"]) | |