Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -245,7 +245,6 @@ def submit_comment(comment):
|
|
| 245 |
elif comment_images[0] in comments:
|
| 246 |
comments.pop(comment_images[0], None)
|
| 247 |
|
| 248 |
-
print(comments)
|
| 249 |
next_comment = ""
|
| 250 |
if comment_images[0] in comments:
|
| 251 |
next_comment = comments[comment_images[0]]
|
|
@@ -263,7 +262,6 @@ def next_image():
|
|
| 263 |
comment_images.append(comment_images[0])
|
| 264 |
comment_images = comment_images[1:]
|
| 265 |
|
| 266 |
-
print(comments)
|
| 267 |
next_comment = ""
|
| 268 |
if comment_images[0] in comments:
|
| 269 |
next_comment = comments[comment_images[0]]
|
|
@@ -279,7 +277,6 @@ def previous_image():
|
|
| 279 |
comment_images = comment_images[1:]
|
| 280 |
comment_images = comment_images[::-1]
|
| 281 |
|
| 282 |
-
print(comments)
|
| 283 |
next_comment = ""
|
| 284 |
if comment_images[0] in comments:
|
| 285 |
next_comment = comments[comment_images[0]]
|
|
@@ -341,6 +338,20 @@ Here are the images and their corresponding comments:
|
|
| 341 |
|
| 342 |
if re.match(r"(.|\n)*Assistant: Liked Art Features: (.|\n)*Disliked Art Features: (.|\n)*", generated_texts):
|
| 343 |
positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
gr.Info("Visual preference successfully extracted.")
|
| 345 |
else:
|
| 346 |
positive_vp = ""
|
|
@@ -456,7 +467,6 @@ def api_fn(api):
|
|
| 456 |
]
|
| 457 |
)
|
| 458 |
gr.Info("Valid API")
|
| 459 |
-
print("correct")
|
| 460 |
valid_api = api
|
| 461 |
|
| 462 |
except anthropic.AuthenticationError:
|
|
@@ -498,7 +508,6 @@ def generate(prompt, vp_pos, vp_neg, slider, example_prompt, gallery, num_infere
|
|
| 498 |
|
| 499 |
generator = torch.Generator().manual_seed(seed)
|
| 500 |
|
| 501 |
-
print(f"Prompt: {prompt}")
|
| 502 |
image = pipe(prompt=prompt,
|
| 503 |
num_inference_steps=num_inference_steps,
|
| 504 |
vp_pos=vp_pos,
|
|
@@ -606,8 +615,8 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
|
|
| 606 |
with gr.Accordion("Examples of Effective Comments", open=False):
|
| 607 |
example_comment_1 = gr.Textbox(
|
| 608 |
label="Example 1",
|
| 609 |
-
lines=
|
| 610 |
-
value="
|
| 611 |
)
|
| 612 |
|
| 613 |
example_comment_2 = gr.Textbox(
|
|
@@ -674,7 +683,7 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
|
|
| 674 |
Generate personalized images using the visual preference extracted from your comments by entering a prompt below! You can adjust the personalization degree to generate results that are more or less personalized and diverse.
|
| 675 |
""")
|
| 676 |
|
| 677 |
-
slider = gr.Slider(value=0.85, minimum=0, maximum=1
|
| 678 |
|
| 679 |
with gr.Row():
|
| 680 |
prompt = gr.Dropdown(
|
|
@@ -707,7 +716,7 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
|
|
| 707 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 708 |
|
| 709 |
with gr.Row(elem_id="main-container"):
|
| 710 |
-
with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=
|
| 711 |
example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
|
| 712 |
gallery = gr.Gallery(
|
| 713 |
value=examples[example_prompts[0]],
|
|
|
|
| 245 |
elif comment_images[0] in comments:
|
| 246 |
comments.pop(comment_images[0], None)
|
| 247 |
|
|
|
|
| 248 |
next_comment = ""
|
| 249 |
if comment_images[0] in comments:
|
| 250 |
next_comment = comments[comment_images[0]]
|
|
|
|
| 262 |
comment_images.append(comment_images[0])
|
| 263 |
comment_images = comment_images[1:]
|
| 264 |
|
|
|
|
| 265 |
next_comment = ""
|
| 266 |
if comment_images[0] in comments:
|
| 267 |
next_comment = comments[comment_images[0]]
|
|
|
|
| 277 |
comment_images = comment_images[1:]
|
| 278 |
comment_images = comment_images[::-1]
|
| 279 |
|
|
|
|
| 280 |
next_comment = ""
|
| 281 |
if comment_images[0] in comments:
|
| 282 |
next_comment = comments[comment_images[0]]
|
|
|
|
| 338 |
|
| 339 |
if re.match(r"(.|\n)*Assistant: Liked Art Features: (.|\n)*Disliked Art Features: (.|\n)*", generated_texts):
|
| 340 |
positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
|
| 341 |
+
positive_vp = positive_vp.split(", ")
|
| 342 |
+
negative_vp = negative_vp.split(", ")
|
| 343 |
+
common = list(set(positive_vp).intersection(negative_vp))
|
| 344 |
+
|
| 345 |
+
for vp in positive_vp:
|
| 346 |
+
if vp in common:
|
| 347 |
+
positive_vp.remove(vp)
|
| 348 |
+
|
| 349 |
+
for vp in negative_vp:
|
| 350 |
+
if vp in common:
|
| 351 |
+
negative_vp.remove(vp)
|
| 352 |
+
|
| 353 |
+
positive_vp = ", ".join(positive_vp)
|
| 354 |
+
negative_vp = ", ".join(negative_vp)
|
| 355 |
gr.Info("Visual preference successfully extracted.")
|
| 356 |
else:
|
| 357 |
positive_vp = ""
|
|
|
|
| 467 |
]
|
| 468 |
)
|
| 469 |
gr.Info("Valid API")
|
|
|
|
| 470 |
valid_api = api
|
| 471 |
|
| 472 |
except anthropic.AuthenticationError:
|
|
|
|
| 508 |
|
| 509 |
generator = torch.Generator().manual_seed(seed)
|
| 510 |
|
|
|
|
| 511 |
image = pipe(prompt=prompt,
|
| 512 |
num_inference_steps=num_inference_steps,
|
| 513 |
vp_pos=vp_pos,
|
|
|
|
| 615 |
with gr.Accordion("Examples of Effective Comments", open=False):
|
| 616 |
example_comment_1 = gr.Textbox(
|
| 617 |
label="Example 1",
|
| 618 |
+
lines=2,
|
| 619 |
+
value="I don't like this at all. The beige colors bother me. It's so minimal and boring. The texture feels too shallow.",
|
| 620 |
)
|
| 621 |
|
| 622 |
example_comment_2 = gr.Textbox(
|
|
|
|
| 683 |
Generate personalized images using the visual preference extracted from your comments by entering a prompt below! You can adjust the personalization degree to generate results that are more or less personalized and diverse.
|
| 684 |
""")
|
| 685 |
|
| 686 |
+
slider = gr.Slider(value=0.85, minimum=0, maximum=1, label="Personalization degree", interactive=True)
|
| 687 |
|
| 688 |
with gr.Row():
|
| 689 |
prompt = gr.Dropdown(
|
|
|
|
| 716 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 717 |
|
| 718 |
with gr.Row(elem_id="main-container"):
|
| 719 |
+
with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=True):
|
| 720 |
example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
|
| 721 |
gallery = gr.Gallery(
|
| 722 |
value=examples[example_prompts[0]],
|