File size: 7,111 Bytes
13ae717
 
 
8185bfc
13ae717
8185bfc
13ae717
 
 
 
 
 
 
 
 
 
878a096
8185bfc
 
60064c6
4049e8a
8185bfc
13ae717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8185bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ae717
 
 
 
8185bfc
 
 
 
 
 
 
 
 
 
13ae717
6b90580
13ae717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8185bfc
 
 
 
 
 
13ae717
 
 
 
 
 
 
 
8185bfc
 
 
 
 
 
 
 
13ae717
 
8185bfc
 
 
 
13ae717
8185bfc
 
13ae717
8185bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ae717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8185bfc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* eslint-disable @typescript-eslint/no-explicit-any */
import type { NextRequest } from "next/server";
import { NextResponse } from "next/server";
import OpenAI from "openai";

import { MODELS } from "@/lib/providers";
import {
  DIVIDER,
  FOLLOW_UP_SYSTEM_PROMPT,
  INITIAL_SYSTEM_PROMPT,
  REPLACE_END,
  SEARCH_START,
} from "@/lib/prompts";

export async function POST(request: NextRequest) {
  const body = await request.json();
  const { prompt, model, redesignMarkdown, html, apiKey, customModel, baseUrl } = body;

  const openai = new OpenAI({
    apiKey: apiKey || process.env.OPENAI_API_KEY || "",
    baseURL: baseUrl || process.env.OPENAI_BASE_URL,
  });

  if (!model || (!prompt && !redesignMarkdown)) {
    return NextResponse.json(
      { ok: false, error: "Missing required fields" },
      { status: 400 }
    );
  }

  const selectedModel = MODELS.find(
    (m) => m.value === model || m.label === model
  );
  if (!selectedModel) {
    return NextResponse.json(
      { ok: false, error: "Invalid model selected" },
      { status: 400 }
    );
  }

  try {
    // Create a stream response
    const encoder = new TextEncoder();
    const stream = new TransformStream();
    const writer = stream.writable.getWriter();

    // Start the response
    const response = new NextResponse(stream.readable, {
      headers: {
        "Content-Type": "text/plain; charset=utf-8",
        "Cache-Control": "no-cache",
        Connection: "keep-alive",
      },
    });

    (async () => {
      let completeResponse = "";
      try {
        const chatCompletion = await openai.chat.completions.create({
          model: customModel || selectedModel.value,
          messages: [
            {
              role: "system",
              content: INITIAL_SYSTEM_PROMPT,
            },
            {
              role: "user",
              content: redesignMarkdown
                ? `Here is my current design as a markdown:\n\n${redesignMarkdown}\n\nNow, please create a new design based on this markdown.`
                : html
                ? `Here is my current HTML code:\n\n\`\`\`html\n${html}\n\`\`\`\n\nNow, please create a new design based on this HTML.`
                : prompt,
            },
          ],
          stream: true,
        });

        for await (const chunk of chatCompletion) {
          const content = chunk.choices[0]?.delta?.content || "";
          await writer.write(encoder.encode(content));
          completeResponse += content;
          if (completeResponse.includes("</html>")) {
            break;
          }
        }
      } catch (error: any) {
        await writer.write(
          encoder.encode(
            JSON.stringify({
              ok: false,
              message:
                error.message ||
                "An error occurred while processing your request.",
            })
          )
        );
      } finally {
        await writer?.close();
      }
    })();

    return response;
  } catch (error: any) {
    return NextResponse.json(
      {
        ok: false,
        message:
          error?.message || "An error occurred while processing your request.",
      },
      { status: 500 }
    );
  }
}

export async function PUT(request: NextRequest) {
  const body = await request.json();
  const { prompt, html, previousPrompt, selectedElementHtml, apiKey, model, baseUrl, customModel } = body;

  const openai = new OpenAI({
    apiKey: apiKey || process.env.OPENAI_API_KEY,
    baseURL: baseUrl || process.env.OPENAI_BASE_URL,
  });

  if (!prompt || !html) {
    return NextResponse.json(
      { ok: false, error: "Missing required fields" },
      { status: 400 }
    );
  }

  const selectedModel = MODELS.find(
    (m) => m.value === model || m.label === model
  );
  if (!selectedModel) {
    return NextResponse.json(
      { ok: false, error: "Invalid model selected" },
      { status: 400 }
    );
  }

  try {
    const response = await openai.chat.completions.create({
      model: customModel || selectedModel.value,
      messages: [
        {
          role: "system",
          content: FOLLOW_UP_SYSTEM_PROMPT,
        },
        {
          role: "user",
          content: previousPrompt
            ? previousPrompt
            : "You are modifying the HTML file based on the user's request.",
        },
        {
          role: "assistant",
          content: `The current code is: \n\`\`\`html\n${html}\n\`\`\` ${selectedElementHtml
            ? `\n\nYou have to update ONLY the following element, NOTHING ELSE: \n\n\`\`\`html\n${selectedElementHtml}\n\`\`\``
            : ""}
          `,
        },
        {
          role: "user",
          content: prompt,
        },
      ],
    });

    const chunk = response.choices[0]?.message?.content;
    if (!chunk) {
      return NextResponse.json(
        { ok: false, message: "No content returned from the model" },
        { status: 400 }
      );
    }

    if (chunk) {
      const updatedLines: number[][] = [];
      let newHtml = html;
      let position = 0;
      let moreBlocks = true;

      while (moreBlocks) {
        const searchStartIndex = chunk.indexOf(SEARCH_START, position);
        if (searchStartIndex === -1) {
          moreBlocks = false;
          continue;
        }

        const dividerIndex = chunk.indexOf(DIVIDER, searchStartIndex);
        if (dividerIndex === -1) {
          moreBlocks = false;
          continue;
        }

        const replaceEndIndex = chunk.indexOf(REPLACE_END, dividerIndex);
        if (replaceEndIndex === -1) {
          moreBlocks = false;
          continue;
        }

        const searchBlock = chunk.substring(
          searchStartIndex + SEARCH_START.length,
          dividerIndex
        );
        const replaceBlock = chunk.substring(
          dividerIndex + DIVIDER.length,
          replaceEndIndex
        );

        if (searchBlock.trim() === "") {
          newHtml = `${replaceBlock}\n${newHtml}`;
          updatedLines.push([1, replaceBlock.split("\n").length]);
        } else {
          const blockPosition = newHtml.indexOf(searchBlock);
          if (blockPosition !== -1) {
            const beforeText = newHtml.substring(0, blockPosition);
            const startLineNumber = beforeText.split("\n").length;
            const replaceLines = replaceBlock.split("\n").length;
            const endLineNumber = startLineNumber + replaceLines - 1;

            updatedLines.push([startLineNumber, endLineNumber]);
            newHtml = newHtml.replace(searchBlock, replaceBlock);
          }
        }

        position = replaceEndIndex + REPLACE_END.length;
      }

      return NextResponse.json({
        ok: true,
        html: newHtml,
        updatedLines,
      });
    } else {
      return NextResponse.json(
        { ok: false, message: "No content returned from the model" },
        { status: 400 }
      );
    }
  } catch (error: any) {
    return NextResponse.json(
      {
        ok: false,
        message:
          error.message || "An error occurred while processing your request.",
      },
      { status: 500 }
    );
  }
}