Spaces:
Runtime error
Runtime error
| from plot_functions import * | |
| import hydra | |
| import torch | |
| from model import LitUnsupervisedSegmenter | |
| from helper import inference_on_location_and_month, inference_on_location | |
| from plot_functions import segment_region | |
| from functools import partial | |
| import gradio as gr | |
| import logging | |
| import sys | |
| import geopandas as gpd | |
| mapbox_access_token = "pk.eyJ1IjoiamVyZW15LWVraW1ldHJpY3MiLCJhIjoiY2xrNjBwNGU2MDRhMjNqbWw0YTJrbnpvNCJ9.poVyIzhJuJmD6ffrL9lm2w" | |
| geo_df = gpd.read_file(gpd.datasets.get_path('naturalearth_cities')) | |
| def get_geomap(long, lat ): | |
| fig = go.Figure(go.Scattermapbox( | |
| lat=geo_df.geometry.y, | |
| lon=geo_df.geometry.x, | |
| mode='markers', | |
| marker=go.scattermapbox.Marker( | |
| size=14 | |
| ), | |
| text=geo_df.name, | |
| )) | |
| fig.add_trace(go.Scattermapbox(lat=[lat], | |
| lon=[long], | |
| mode='markers', | |
| marker=go.scattermapbox.Marker( | |
| size=14 | |
| ), | |
| marker_color="green", | |
| text=['Actual position'])) | |
| fig.update_layout( | |
| showlegend=False, | |
| hovermode='closest', | |
| mapbox=dict( | |
| accesstoken=mapbox_access_token, | |
| center=go.layout.mapbox.Center( | |
| lat=lat, | |
| lon=long | |
| ), | |
| zoom=3 | |
| ) | |
| ) | |
| return fig | |
| if __name__ == "__main__": | |
| file_handler = logging.FileHandler(filename='biomap.log') | |
| stdout_handler = logging.StreamHandler(stream=sys.stdout) | |
| handlers = [file_handler, stdout_handler] | |
| logging.basicConfig(handlers=handlers, encoding='utf-8', level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") | |
| # Initialize hydra with configs | |
| hydra.initialize(config_path="configs", job_name="corine") | |
| cfg = hydra.compose(config_name="my_train_config.yml") | |
| logging.info(f"config : {cfg}") | |
| nbclasses = cfg.dir_dataset_n_classes | |
| model = LitUnsupervisedSegmenter(nbclasses, cfg) | |
| model = model.cpu() | |
| logging.info(f"Model Initialiazed") | |
| model_path = "biomap/checkpoint/model/model.pt" | |
| saved_state_dict = torch.load(model_path, map_location=torch.device("cpu")) | |
| logging.info(f"Model weights Loaded") | |
| model.load_state_dict(saved_state_dict) | |
| logging.info(f"Model Loaded") | |
| with gr.Blocks(title="Biomap by Ekimetrics") as demo: | |
| gr.Markdown("<h1><center>π’ Biomap by Ekimetrics π’</center></h1>") | |
| gr.Markdown("<h4><center>Estimate Biodiversity score in the world by using segmentation of land.</center></h4>") | |
| gr.Markdown("Land use is divided into 6 differents classes :Each class is assigned a GBS score from 0 to 1") | |
| gr.Markdown("Buildings : 0.1 | Infrastructure : 0.1 | Cultivation : 0.4 | Wetland : 0.9 | Water : 0.9 | Natural green : 1 ") | |
| gr.Markdown("The score is then average on the full image.") | |
| with gr.Tab("Single Image"): | |
| with gr.Row(): | |
| input_map = gr.Plot() | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_latitude = gr.Number(label="lattitude", value=2.98) | |
| input_longitude = gr.Number(label="longitude", value=48.81) | |
| input_date = gr.Textbox(label="start_date", value="2020-03-20") | |
| single_button = gr.Button("Predict") | |
| with gr.Row(): | |
| raw_image = gr.Image(label = "Localisation visualization") | |
| output_image = gr.Image(label = "Labeled visualisation") | |
| score_biodiv = gr.Number(label = "Biodiversity score") | |
| with gr.Tab("TimeLapse"): | |
| with gr.Row(): | |
| input_map_2 = gr.Plot() | |
| with gr.Column(): | |
| with gr.Row(): | |
| timelapse_input_latitude = gr.Number(value=2.98, label="Latitude") | |
| timelapse_input_longitude = gr.Number(value=48.81, label="Longitude") | |
| with gr.Row(): | |
| timelapse_start_date = gr.Dropdown(choices=[2017,2018,2019,2020,2021,2022,2023], value=2020, label="Start Date") | |
| timelapse_end_date = gr.Dropdown(choices=[2017,2018,2019,2020,2021,2022,2023], value=2021, label="End Date") | |
| segmentation = gr.Radio(choices=['month', 'year', '2months'], value='year', label="Interval of time between two segmentation") | |
| timelapse_button = gr.Button(value="Predict") | |
| map = gr.Plot() | |
| demo.load(get_geomap, [input_latitude, input_longitude], input_map) | |
| single_button.click(get_geomap, [input_latitude, input_longitude], input_map) | |
| single_button.click(partial(inference_on_location_and_month, model), inputs=[input_latitude, input_longitude, input_date], outputs=[raw_image, output_image,score_biodiv]) | |
| demo.load(get_geomap, [timelapse_input_latitude, timelapse_input_longitude], input_map_2) | |
| timelapse_button.click(get_geomap, [timelapse_input_latitude, timelapse_input_longitude], input_map_2) | |
| timelapse_button.click(partial(inference_on_location, model), inputs=[timelapse_input_latitude, timelapse_input_longitude, timelapse_start_date, timelapse_end_date,segmentation], outputs=[map]) | |
| demo.launch() | |