Spaces:
Runtime error
Runtime error
Commit
·
9fcd62f
1
Parent(s):
7a7548d
streamlit
Browse files- README.md +3 -2
- biomap/Untitled.ipynb +0 -0
- biomap/checkpoint/model/model.pt +1 -1
- biomap/helper.py +12 -7
- biomap/inference.py +3 -1
- biomap/model.py +1 -0
- biomap/streamlit_app.py +125 -0
- biomap/utils copy.py +675 -0
- biomap/utils.py +105 -27
- biomap/utils_gee.py +4 -2
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
license: cc-by-4.0
|
| 3 |
-
sdk:
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
pinned: false
|
| 6 |
title: Biomap
|
| 7 |
emoji: 🐢
|
| 8 |
colorTo: green
|
| 9 |
-
app_file: biomap/
|
| 10 |
---
|
| 11 |
|
| 12 |
# Welcome to the project inno-satellite-images-segmentation-gan
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-4.0
|
| 3 |
+
sdk: streamlit
|
| 4 |
+
sdk_version: 1.25.0
|
| 5 |
colorFrom: blue
|
| 6 |
pinned: false
|
| 7 |
title: Biomap
|
| 8 |
emoji: 🐢
|
| 9 |
colorTo: green
|
| 10 |
+
app_file: biomap/streamlit_app.py
|
| 11 |
---
|
| 12 |
|
| 13 |
# Welcome to the project inno-satellite-images-segmentation-gan
|
biomap/Untitled.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
biomap/checkpoint/model/model.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
oid sha256:106fe1ea7f4f0819e360823374bce7840a1a150b39a2e45090612c159a25dfca
|
| 3 |
-
size 95521785
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
oid sha256:106fe1ea7f4f0819e360823374bce7840a1a150b39a2e45090612c159a25dfca
|
| 3 |
+
size 95521785
|
biomap/helper.py
CHANGED
|
@@ -1,16 +1,21 @@
|
|
| 1 |
import torch.multiprocessing
|
| 2 |
import torchvision.transforms as T
|
| 3 |
import numpy as np
|
| 4 |
-
from utils import transform_to_pil, compute_biodiv_score, plot_imgs_labels
|
| 5 |
from utils_gee import get_image
|
| 6 |
from dateutil.relativedelta import relativedelta
|
|
|
|
|
|
|
| 7 |
import datetime
|
| 8 |
import matplotlib as mpl
|
| 9 |
from joblib import Parallel, cpu_count, delayed
|
| 10 |
import logging
|
| 11 |
from inference import inference
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
| 14 |
"""Performe an inference on the latitude and longitude between the start date and the end date
|
| 15 |
|
| 16 |
Args:
|
|
@@ -47,6 +52,7 @@ def inference_on_location(model, latitude=2.98, longitude=48.81, start_date=2020
|
|
| 47 |
dates = [d.strftime("%Y-%m-%d") for d in dates]
|
| 48 |
|
| 49 |
all_image = Parallel(n_jobs=cpu_count(), prefer="threads")(delayed(get_image)(location, d1,d2) for d1, d2 in zip(dates[:-1],dates[1:]))
|
|
|
|
| 50 |
outputs = inference(np.array(all_image), model)
|
| 51 |
|
| 52 |
logging.info("Calculating Biodiversity Scores...")
|
|
@@ -61,8 +67,8 @@ def inference_on_location(model, latitude=2.98, longitude=48.81, start_date=2020
|
|
| 61 |
# fig.save("test.png")
|
| 62 |
return fig
|
| 63 |
|
| 64 |
-
|
| 65 |
-
def inference_on_location_and_month(model,
|
| 66 |
"""Performe an inference on the latitude and longitude between the start date and the end date
|
| 67 |
|
| 68 |
Args:
|
|
@@ -83,7 +89,6 @@ def inference_on_location_and_month(model, latitude = 2.98, longitude = 48.81, s
|
|
| 83 |
end_date = datetime.datetime.strptime(start_date, "%Y-%m-%d") + relativedelta(months=1)
|
| 84 |
end_date = datetime.datetime.strftime(end_date, "%Y-%m-%d")
|
| 85 |
|
| 86 |
-
logging.info("Getting Image...")
|
| 87 |
img_test = get_image(location, start_date, end_date)
|
| 88 |
outputs = inference(np.array([img_test]), model)
|
| 89 |
|
|
@@ -91,8 +96,8 @@ def inference_on_location_and_month(model, latitude = 2.98, longitude = 48.81, s
|
|
| 91 |
score, score_details = compute_biodiv_score(outputs[0]["linear_preds"].detach().numpy())
|
| 92 |
logging.info(f"Calculated Biodiversity Score : {score}")
|
| 93 |
img, label, labeled_img = transform_to_pil(outputs[0])
|
| 94 |
-
|
| 95 |
-
return
|
| 96 |
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import torch.multiprocessing
|
| 2 |
import torchvision.transforms as T
|
| 3 |
import numpy as np
|
| 4 |
+
from utils import transform_to_pil, compute_biodiv_score, plot_imgs_labels, plot_image
|
| 5 |
from utils_gee import get_image
|
| 6 |
from dateutil.relativedelta import relativedelta
|
| 7 |
+
|
| 8 |
+
from model import LitUnsupervisedSegmenter
|
| 9 |
import datetime
|
| 10 |
import matplotlib as mpl
|
| 11 |
from joblib import Parallel, cpu_count, delayed
|
| 12 |
import logging
|
| 13 |
from inference import inference
|
| 14 |
+
import streamlit as st
|
| 15 |
+
import cv2
|
| 16 |
|
| 17 |
+
@st.cache_data(hash_funcs={LitUnsupervisedSegmenter: lambda dt: dt.name})
|
| 18 |
+
def inference_on_location(model, longitude=2.98, latitude=48.81, start_date=2020, end_date=2022, how="year"):
|
| 19 |
"""Performe an inference on the latitude and longitude between the start date and the end date
|
| 20 |
|
| 21 |
Args:
|
|
|
|
| 52 |
dates = [d.strftime("%Y-%m-%d") for d in dates]
|
| 53 |
|
| 54 |
all_image = Parallel(n_jobs=cpu_count(), prefer="threads")(delayed(get_image)(location, d1,d2) for d1, d2 in zip(dates[:-1],dates[1:]))
|
| 55 |
+
# all_image = [cv2.imread("output/img.png") for i in range(len(dates))]
|
| 56 |
outputs = inference(np.array(all_image), model)
|
| 57 |
|
| 58 |
logging.info("Calculating Biodiversity Scores...")
|
|
|
|
| 67 |
# fig.save("test.png")
|
| 68 |
return fig
|
| 69 |
|
| 70 |
+
@st.cache_data(hash_funcs={LitUnsupervisedSegmenter: lambda dt: dt.name})
|
| 71 |
+
def inference_on_location_and_month(model, longitude = 2.98, latitude = 48.81, start_date = '2020-03-20'):
|
| 72 |
"""Performe an inference on the latitude and longitude between the start date and the end date
|
| 73 |
|
| 74 |
Args:
|
|
|
|
| 89 |
end_date = datetime.datetime.strptime(start_date, "%Y-%m-%d") + relativedelta(months=1)
|
| 90 |
end_date = datetime.datetime.strftime(end_date, "%Y-%m-%d")
|
| 91 |
|
|
|
|
| 92 |
img_test = get_image(location, start_date, end_date)
|
| 93 |
outputs = inference(np.array([img_test]), model)
|
| 94 |
|
|
|
|
| 96 |
score, score_details = compute_biodiv_score(outputs[0]["linear_preds"].detach().numpy())
|
| 97 |
logging.info(f"Calculated Biodiversity Score : {score}")
|
| 98 |
img, label, labeled_img = transform_to_pil(outputs[0])
|
| 99 |
+
fig = plot_image([start_date], [np.asarray(img)], [np.asarray(labeled_img)], [score_details], [score])
|
| 100 |
+
return fig
|
| 101 |
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
biomap/inference.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import torch.multiprocessing
|
| 2 |
import torchvision.transforms as T
|
| 3 |
from utils import transform_to_pil
|
|
|
|
| 4 |
|
| 5 |
preprocess = T.Compose(
|
| 6 |
[
|
|
@@ -13,6 +14,7 @@ preprocess = T.Compose(
|
|
| 13 |
)
|
| 14 |
|
| 15 |
def inference(images, model):
|
|
|
|
| 16 |
x = torch.stack([preprocess(image) for image in images]).cpu()
|
| 17 |
|
| 18 |
with torch.no_grad():
|
|
@@ -47,7 +49,7 @@ if __name__ == "__main__":
|
|
| 47 |
cfg = hydra.compose(config_name="my_train_config.yml")
|
| 48 |
|
| 49 |
# Load the model
|
| 50 |
-
model_path = "
|
| 51 |
saved_state_dict = torch.load(model_path, map_location=torch.device("cpu"))
|
| 52 |
|
| 53 |
nbclasses = cfg.dir_dataset_n_classes
|
|
|
|
| 1 |
import torch.multiprocessing
|
| 2 |
import torchvision.transforms as T
|
| 3 |
from utils import transform_to_pil
|
| 4 |
+
import logging
|
| 5 |
|
| 6 |
preprocess = T.Compose(
|
| 7 |
[
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
def inference(images, model):
|
| 17 |
+
logging.info("Inference on Images")
|
| 18 |
x = torch.stack([preprocess(image) for image in images]).cpu()
|
| 19 |
|
| 20 |
with torch.no_grad():
|
|
|
|
| 49 |
cfg = hydra.compose(config_name="my_train_config.yml")
|
| 50 |
|
| 51 |
# Load the model
|
| 52 |
+
model_path = "checkpoint/model/model.pt"
|
| 53 |
saved_state_dict = torch.load(model_path, map_location=torch.device("cpu"))
|
| 54 |
|
| 55 |
nbclasses = cfg.dir_dataset_n_classes
|
biomap/model.py
CHANGED
|
@@ -10,6 +10,7 @@ import unet
|
|
| 10 |
class LitUnsupervisedSegmenter(pl.LightningModule):
|
| 11 |
def __init__(self, n_classes, cfg):
|
| 12 |
super().__init__()
|
|
|
|
| 13 |
self.cfg = cfg
|
| 14 |
self.n_classes = n_classes
|
| 15 |
|
|
|
|
| 10 |
class LitUnsupervisedSegmenter(pl.LightningModule):
|
| 11 |
def __init__(self, n_classes, cfg):
|
| 12 |
super().__init__()
|
| 13 |
+
self.name = "LitUnsupervisedSegmenter"
|
| 14 |
self.cfg = cfg
|
| 15 |
self.n_classes = n_classes
|
| 16 |
|
biomap/streamlit_app.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_folium import st_folium
|
| 3 |
+
import folium
|
| 4 |
+
import logging
|
| 5 |
+
import sys
|
| 6 |
+
import hydra
|
| 7 |
+
from plot_functions import *
|
| 8 |
+
import hydra
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from model import LitUnsupervisedSegmenter
|
| 12 |
+
from helper import inference_on_location_and_month, inference_on_location
|
| 13 |
+
|
| 14 |
+
DEFAULT_LATITUDE = 48.81
|
| 15 |
+
DEFAULT_LONGITUDE = 2.98
|
| 16 |
+
DEFAULT_ZOOM = 5
|
| 17 |
+
|
| 18 |
+
MIN_YEAR = 2018
|
| 19 |
+
MAX_YEAR = 2024
|
| 20 |
+
|
| 21 |
+
FOLIUM_WIDTH = 925
|
| 22 |
+
FOLIUM_HEIGHT = 600
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
st.set_page_config(layout="wide")
|
| 26 |
+
@st.cache_resource
|
| 27 |
+
def init_cfg(cfg_name):
|
| 28 |
+
hydra.initialize(config_path="configs", job_name="corine")
|
| 29 |
+
return hydra.compose(config_name=cfg_name)
|
| 30 |
+
|
| 31 |
+
@st.cache_resource
|
| 32 |
+
def init_app(cfg_name) -> LitUnsupervisedSegmenter:
|
| 33 |
+
file_handler = logging.FileHandler(filename='biomap.log')
|
| 34 |
+
stdout_handler = logging.StreamHandler(stream=sys.stdout)
|
| 35 |
+
handlers = [file_handler, stdout_handler]
|
| 36 |
+
|
| 37 |
+
logging.basicConfig(handlers=handlers, encoding='utf-8', level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
| 38 |
+
# # Initialize hydra with configs
|
| 39 |
+
# GlobalHydra.instance().clear()
|
| 40 |
+
|
| 41 |
+
cfg = init_cfg(cfg_name)
|
| 42 |
+
logging.info(f"config : {cfg}")
|
| 43 |
+
nbclasses = cfg.dir_dataset_n_classes
|
| 44 |
+
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
| 45 |
+
model = model.cpu()
|
| 46 |
+
logging.info(f"Model Initialiazed")
|
| 47 |
+
|
| 48 |
+
model_path = "biomap/checkpoint/model/model.pt"
|
| 49 |
+
saved_state_dict = torch.load(model_path, map_location=torch.device("cpu"))
|
| 50 |
+
logging.info(f"Model weights Loaded")
|
| 51 |
+
model.load_state_dict(saved_state_dict)
|
| 52 |
+
return model
|
| 53 |
+
|
| 54 |
+
def app(model):
|
| 55 |
+
if "infered" not in st.session_state:
|
| 56 |
+
st.session_state["infered"] = False
|
| 57 |
+
|
| 58 |
+
st.markdown("<h1 style='text-align: center;'>🐢 Biomap by Ekimetrics 🐢</h1>", unsafe_allow_html=True)
|
| 59 |
+
st.markdown("<h2 style='text-align: center;'>Estimate Biodiversity score in the world with the help of land use.</h2>", unsafe_allow_html=True)
|
| 60 |
+
st.markdown("<p style='text-align: center;'>The segmentation is an association of UNet and DinoV1 trained on the dataset CORINE.</p>", unsafe_allow_html=True)
|
| 61 |
+
st.markdown("<p style='text-align: center;'>Land use is divided into 6 differents classes :Each class is assigned a GBS score from 0 to 1</p>", unsafe_allow_html=True)
|
| 62 |
+
st.markdown("<p style='text-align: center;'>Buildings : 0.1 | Infrastructure : 0.1 | Cultivation : 0.4 | Wetland : 0.9 | Water : 0.9 | Natural green : 1 </p>", unsafe_allow_html=True)
|
| 63 |
+
st.markdown("<p style='text-align: center;'>The score is then average on the full image.</p>", unsafe_allow_html=True)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
col_1, col_2 = st.columns([0.5,0.5])
|
| 68 |
+
with col_1:
|
| 69 |
+
m = folium.Map(location=[DEFAULT_LATITUDE, DEFAULT_LONGITUDE], zoom_start=DEFAULT_ZOOM)
|
| 70 |
+
|
| 71 |
+
# The code below will be responsible for displaying
|
| 72 |
+
# the popup with the latitude and longitude shown
|
| 73 |
+
m.add_child(folium.LatLngPopup())
|
| 74 |
+
f_map = st_folium(m, width=FOLIUM_WIDTH, height=FOLIUM_HEIGHT)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
selected_latitude = DEFAULT_LATITUDE
|
| 78 |
+
selected_longitude = DEFAULT_LONGITUDE
|
| 79 |
+
|
| 80 |
+
if f_map.get("last_clicked"):
|
| 81 |
+
selected_latitude = f_map["last_clicked"]["lat"]
|
| 82 |
+
selected_longitude = f_map["last_clicked"]["lng"]
|
| 83 |
+
|
| 84 |
+
with col_2:
|
| 85 |
+
tabs1, tabs2 = st.tabs(["TimeLapse", "Single Image"])
|
| 86 |
+
with tabs1:
|
| 87 |
+
lat = st.text_input("lattitude", value=selected_latitude)
|
| 88 |
+
long = st.text_input("longitude", value=selected_longitude)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
years = list(range(MIN_YEAR, MAX_YEAR, 1))
|
| 92 |
+
start_date = st.selectbox("Start date", years)
|
| 93 |
+
|
| 94 |
+
end_years = [year for year in years if year > start_date]
|
| 95 |
+
end_date = st.selectbox("End date", end_years)
|
| 96 |
+
|
| 97 |
+
segment_interval = st.radio("Interval of time between two segmentation", options=['month','2months', 'year'],horizontal=True)
|
| 98 |
+
submit = st.button("Predict TimeLapse", use_container_width=True)
|
| 99 |
+
with tabs2:
|
| 100 |
+
lat = st.text_input("lat.", value=selected_latitude)
|
| 101 |
+
long = st.text_input("long.", value=selected_longitude)
|
| 102 |
+
|
| 103 |
+
date = st.text_input("date", "2021-01-01", placeholder="2021-01-01")
|
| 104 |
+
|
| 105 |
+
submit2 = st.button("Predict Single Image", use_container_width=True)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
if submit:
|
| 109 |
+
fig = inference_on_location(model, lat, long, start_date, end_date, segment_interval)
|
| 110 |
+
st.session_state["infered"] = True
|
| 111 |
+
st.session_state["previous_fig"] = fig
|
| 112 |
+
|
| 113 |
+
if submit2:
|
| 114 |
+
fig = inference_on_location_and_month(model, lat, long, date)
|
| 115 |
+
st.session_state["infered"] = True
|
| 116 |
+
st.session_state["previous_fig"] = fig
|
| 117 |
+
|
| 118 |
+
if st.session_state["infered"]:
|
| 119 |
+
st.plotly_chart(st.session_state["previous_fig"], use_container_width=True)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
model = init_app("my_train_config.yml")
|
| 125 |
+
app(model)
|
biomap/utils copy.py
ADDED
|
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import collections
|
| 2 |
+
import os
|
| 3 |
+
from os.path import join
|
| 4 |
+
import io
|
| 5 |
+
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch.multiprocessing
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import wget
|
| 12 |
+
|
| 13 |
+
import datetime
|
| 14 |
+
|
| 15 |
+
from dateutil.relativedelta import relativedelta
|
| 16 |
+
from PIL import Image
|
| 17 |
+
from scipy.optimize import linear_sum_assignment
|
| 18 |
+
from torch._six import string_classes
|
| 19 |
+
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format
|
| 20 |
+
from torchmetrics import Metric
|
| 21 |
+
from torchvision import models
|
| 22 |
+
from torchvision import transforms as T
|
| 23 |
+
from torch.utils.tensorboard.summary import hparams
|
| 24 |
+
import matplotlib as mpl
|
| 25 |
+
from PIL import Image
|
| 26 |
+
|
| 27 |
+
import matplotlib as mpl
|
| 28 |
+
|
| 29 |
+
import torch.multiprocessing
|
| 30 |
+
import torchvision.transforms as T
|
| 31 |
+
|
| 32 |
+
import plotly.graph_objects as go
|
| 33 |
+
import plotly.express as px
|
| 34 |
+
import numpy as np
|
| 35 |
+
from plotly.subplots import make_subplots
|
| 36 |
+
|
| 37 |
+
import os
|
| 38 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 39 |
+
|
| 40 |
+
colors = ("red", "palegreen", "green", "steelblue", "blue", "yellow", "lightgrey")
|
| 41 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 42 |
+
mapping_class = {
|
| 43 |
+
"Buildings": 1,
|
| 44 |
+
"Cultivation": 2,
|
| 45 |
+
"Natural green": 3,
|
| 46 |
+
"Wetland": 4,
|
| 47 |
+
"Water": 5,
|
| 48 |
+
"Infrastructure": 6,
|
| 49 |
+
"Background": 0,
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
score_attribution = {
|
| 53 |
+
"Buildings" : 0.,
|
| 54 |
+
"Cultivation": 0.3,
|
| 55 |
+
"Natural green": 1.,
|
| 56 |
+
"Wetland": 0.9,
|
| 57 |
+
"Water": 0.9,
|
| 58 |
+
"Infrastructure": 0.,
|
| 59 |
+
"Background": 0.
|
| 60 |
+
}
|
| 61 |
+
bounds = list(np.arange(len(mapping_class.keys()) + 1) + 1)
|
| 62 |
+
cmap = mpl.colors.ListedColormap(colors)
|
| 63 |
+
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
|
| 64 |
+
|
| 65 |
+
def compute_biodiv_score(class_image):
|
| 66 |
+
"""Compute the biodiversity score of an image
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
image (_type_): _description_
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
biodiversity_score: the biodiversity score associated to the landscape of the image
|
| 73 |
+
"""
|
| 74 |
+
score_matrice = class_image.copy().astype(int)
|
| 75 |
+
for key in mapping_class.keys():
|
| 76 |
+
score_matrice = np.where(score_matrice==mapping_class[key], score_attribution[key], score_matrice)
|
| 77 |
+
number_of_pixel = np.prod(list(score_matrice.shape))
|
| 78 |
+
score = np.sum(score_matrice)/number_of_pixel
|
| 79 |
+
score_details = {
|
| 80 |
+
key: np.sum(np.where(class_image == mapping_class[key], 1, 0))
|
| 81 |
+
for key in mapping_class.keys()
|
| 82 |
+
if key not in ["background"]
|
| 83 |
+
}
|
| 84 |
+
return score, score_details
|
| 85 |
+
|
| 86 |
+
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
| 87 |
+
scores = [0.89, 0.70, 0.3, 0.2]
|
| 88 |
+
|
| 89 |
+
# fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 90 |
+
# fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 91 |
+
|
| 92 |
+
# # Scores
|
| 93 |
+
# scatters = [go.Scatter(
|
| 94 |
+
# x=months[:i+1],
|
| 95 |
+
# y=scores[:i+1],
|
| 96 |
+
# mode="lines+markers+text",
|
| 97 |
+
# marker_color="black",
|
| 98 |
+
# text = [f"{score:.4f}" for score in scores[:i+1]],
|
| 99 |
+
# textposition="top center",
|
| 100 |
+
|
| 101 |
+
# ) for i in range(len(scores))]
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 106 |
+
# fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 107 |
+
|
| 108 |
+
# fig.add_trace(go.Pie(labels = class_names,
|
| 109 |
+
# values = [nb_values[0][key] for key in mapping_class.keys()],
|
| 110 |
+
# marker_colors = colors,
|
| 111 |
+
# name="Segment repartition",
|
| 112 |
+
# textposition='inside',
|
| 113 |
+
# texttemplate = "%{percent:.0%}",
|
| 114 |
+
# textfont_size=14
|
| 115 |
+
# ),
|
| 116 |
+
# row=1, col=3)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# fig.add_trace(scatters[0], row=1, col=4)
|
| 120 |
+
# # fig.update_traces(selector=dict(type='scatter'))
|
| 121 |
+
|
| 122 |
+
# number_frames = len(imgs)
|
| 123 |
+
# frames = [dict(
|
| 124 |
+
# name = k,
|
| 125 |
+
# data = [ fig2["frames"][k]["data"][0],
|
| 126 |
+
# fig3["frames"][k]["data"][0],
|
| 127 |
+
# go.Pie(labels = class_names,
|
| 128 |
+
# values = [nb_values[k][key] for key in mapping_class.keys()],
|
| 129 |
+
# marker_colors = colors,
|
| 130 |
+
# name="Segment repartition",
|
| 131 |
+
# textposition='inside',
|
| 132 |
+
# texttemplate = "%{percent:.0%}",
|
| 133 |
+
# textfont_size=14
|
| 134 |
+
# ),
|
| 135 |
+
# scatters[k]
|
| 136 |
+
# ],
|
| 137 |
+
# traces=[0, 1, 2, 3]
|
| 138 |
+
# ) for k in range(number_frames)]
|
| 139 |
+
|
| 140 |
+
# updatemenus = [dict(type='buttons',
|
| 141 |
+
# buttons=[dict(
|
| 142 |
+
# label='Play',
|
| 143 |
+
# method='animate',
|
| 144 |
+
# args=[
|
| 145 |
+
# [f'{k}' for k in range(number_frames)],
|
| 146 |
+
# dict(
|
| 147 |
+
# frame=dict(duration=500, redraw=False),
|
| 148 |
+
# transition=dict(duration=0),
|
| 149 |
+
# # easing='linear',
|
| 150 |
+
# # fromcurrent=True,
|
| 151 |
+
# # mode='immediate'
|
| 152 |
+
# )
|
| 153 |
+
# ])
|
| 154 |
+
# ],
|
| 155 |
+
# direction= 'left',
|
| 156 |
+
# pad=dict(r= 10, t=85),
|
| 157 |
+
# showactive=True, x= 0.1, y= 0.1, xanchor= 'right', yanchor= 'bottom')
|
| 158 |
+
# ]
|
| 159 |
+
|
| 160 |
+
# sliders = [{'yanchor': 'top',
|
| 161 |
+
# 'xanchor': 'left',
|
| 162 |
+
# 'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
| 163 |
+
# 'transition': {'duration': 500.0, 'easing': 'linear'},
|
| 164 |
+
# 'pad': {'b': 10, 't': 50},
|
| 165 |
+
# 'len': 0.9, 'x': 0.1, 'y': 0,
|
| 166 |
+
# 'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
| 167 |
+
# 'transition': {'duration': 0, 'easing': 'linear'}}],
|
| 168 |
+
# 'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
| 169 |
+
# ]}]
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# fig.update(frames=frames,
|
| 173 |
+
# layout={
|
| 174 |
+
# "xaxis1": {
|
| 175 |
+
# "autorange":True,
|
| 176 |
+
# 'showgrid': False,
|
| 177 |
+
# 'zeroline': False, # thick line at x=0
|
| 178 |
+
# 'visible': False, # numbers below
|
| 179 |
+
# },
|
| 180 |
+
|
| 181 |
+
# "yaxis1": {
|
| 182 |
+
# "autorange":True,
|
| 183 |
+
# 'showgrid': False,
|
| 184 |
+
# 'zeroline': False,
|
| 185 |
+
# 'visible': False,},
|
| 186 |
+
|
| 187 |
+
# "xaxis2": {
|
| 188 |
+
# "autorange":True,
|
| 189 |
+
# 'showgrid': False,
|
| 190 |
+
# 'zeroline': False,
|
| 191 |
+
# 'visible': False,
|
| 192 |
+
# },
|
| 193 |
+
|
| 194 |
+
# "yaxis2": {
|
| 195 |
+
# "autorange":True,
|
| 196 |
+
# 'showgrid': False,
|
| 197 |
+
# 'zeroline': False,
|
| 198 |
+
# 'visible': False,},
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
# "xaxis4": {
|
| 202 |
+
# "ticktext": months,
|
| 203 |
+
# "tickvals": months,
|
| 204 |
+
# "tickangle": 90,
|
| 205 |
+
# },
|
| 206 |
+
# "yaxis4": {
|
| 207 |
+
# 'range': [min(scores)*0.9, max(scores)* 1.1],
|
| 208 |
+
# 'showgrid': False,
|
| 209 |
+
# 'zeroline': False,
|
| 210 |
+
# 'visible': True
|
| 211 |
+
# },
|
| 212 |
+
# })
|
| 213 |
+
# fig.update_layout(
|
| 214 |
+
# updatemenus=updatemenus,
|
| 215 |
+
# sliders=sliders,
|
| 216 |
+
# # legend=dict(
|
| 217 |
+
# # yanchor= 'bottom',
|
| 218 |
+
# # xanchor= 'center',
|
| 219 |
+
# # orientation="h"),
|
| 220 |
+
|
| 221 |
+
# )
|
| 222 |
+
# Scores
|
| 223 |
+
fig = make_subplots(
|
| 224 |
+
rows=1, cols=4,
|
| 225 |
+
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
|
| 226 |
+
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 230 |
+
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 231 |
+
pie_charts = [go.Pie(labels = class_names,
|
| 232 |
+
values = [nb_values[k][key] for key in mapping_class.keys()],
|
| 233 |
+
marker_colors = colors,
|
| 234 |
+
name="Segment repartition",
|
| 235 |
+
textposition='inside',
|
| 236 |
+
texttemplate = "%{percent:.0%}",
|
| 237 |
+
textfont_size=14,
|
| 238 |
+
)
|
| 239 |
+
for k in range(len(scores))]
|
| 240 |
+
scatters = [go.Scatter(
|
| 241 |
+
x=months[:i+1],
|
| 242 |
+
y=scores[:i+1],
|
| 243 |
+
mode="lines+markers+text",
|
| 244 |
+
marker_color="black",
|
| 245 |
+
text = [f"{score:.4f}" for score in scores[:i+1]],
|
| 246 |
+
textposition="top center",
|
| 247 |
+
) for i in range(len(scores))]
|
| 248 |
+
|
| 249 |
+
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 250 |
+
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 251 |
+
fig.add_trace(pie_charts[0], row=1, col=3)
|
| 252 |
+
fig.add_trace(scatters[0], row=1, col=4)
|
| 253 |
+
|
| 254 |
+
start_date = datetime.datetime.strptime(months[0], "%Y-%m-%d") - relativedelta(months=1)
|
| 255 |
+
end_date = datetime.datetime.strptime(months[-1], "%Y-%m-%d") + relativedelta(months=1)
|
| 256 |
+
interval = [start_date.strftime("%Y-%m-%d"),end_date.strftime("%Y-%m-%d")]
|
| 257 |
+
fig.update_layout({
|
| 258 |
+
"xaxis": {
|
| 259 |
+
"autorange":True,
|
| 260 |
+
'showgrid': False,
|
| 261 |
+
'zeroline': False, # thick line at x=0
|
| 262 |
+
'visible': False, # numbers below
|
| 263 |
+
},
|
| 264 |
+
|
| 265 |
+
"yaxis": {
|
| 266 |
+
"autorange":True,
|
| 267 |
+
'showgrid': False,
|
| 268 |
+
'zeroline': False,
|
| 269 |
+
'visible': False,},
|
| 270 |
+
|
| 271 |
+
"xaxis1": {
|
| 272 |
+
"range":[0,imgs[0].shape[1]],
|
| 273 |
+
'showgrid': False,
|
| 274 |
+
'zeroline': False,
|
| 275 |
+
'visible': False,
|
| 276 |
+
},
|
| 277 |
+
|
| 278 |
+
"yaxis1": {
|
| 279 |
+
"range":[imgs[0].shape[0],0],
|
| 280 |
+
'showgrid': False,
|
| 281 |
+
'zeroline': False,
|
| 282 |
+
'visible': False,},
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
"xaxis3": {
|
| 286 |
+
"dtick":"M3",
|
| 287 |
+
"range":interval
|
| 288 |
+
},
|
| 289 |
+
"yaxis3": {
|
| 290 |
+
'range': [min(scores)*0.9, max(scores)* 1.1],
|
| 291 |
+
'showgrid': False,
|
| 292 |
+
'zeroline': False,
|
| 293 |
+
'visible': True
|
| 294 |
+
}}
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
frames = [dict(
|
| 298 |
+
name = k,
|
| 299 |
+
data = [ fig2["frames"][k]["data"][0],
|
| 300 |
+
fig3["frames"][k]["data"][0],
|
| 301 |
+
pie_charts[k],
|
| 302 |
+
scatters[k]
|
| 303 |
+
],
|
| 304 |
+
|
| 305 |
+
traces=[0,1,2,3]
|
| 306 |
+
) for k in range(len(scores))]
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
updatemenus = [dict(type='buttons',
|
| 310 |
+
buttons=[dict(label='Play',
|
| 311 |
+
method='animate',
|
| 312 |
+
args=[
|
| 313 |
+
[f'{k}' for k in range(len(scores))],
|
| 314 |
+
dict(
|
| 315 |
+
frame=dict(duration=500, redraw=False),
|
| 316 |
+
transition=dict(duration=0),
|
| 317 |
+
# easing='linear',
|
| 318 |
+
# fromcurrent=True,
|
| 319 |
+
# mode='immediate'
|
| 320 |
+
)
|
| 321 |
+
]
|
| 322 |
+
|
| 323 |
+
)],
|
| 324 |
+
direction= 'left',
|
| 325 |
+
pad=dict(r= 10, t=85),
|
| 326 |
+
showactive =True, x= 0.1, y= 0, xanchor= 'right', yanchor= 'top')
|
| 327 |
+
]
|
| 328 |
+
|
| 329 |
+
sliders = [{'yanchor': 'top',
|
| 330 |
+
'xanchor': 'left',
|
| 331 |
+
'currentvalue': {
|
| 332 |
+
'font': {'size': 16},
|
| 333 |
+
'visible': True,
|
| 334 |
+
'xanchor': 'right'},
|
| 335 |
+
'transition': {
|
| 336 |
+
'duration': 500.0,
|
| 337 |
+
'easing': 'linear'},
|
| 338 |
+
'pad': {'b': 10, 't': 50},
|
| 339 |
+
'len': 0.9, 'x': 0.1, 'y': 0,
|
| 340 |
+
'steps': [{'args': [None, {'frame': {'duration': 500.0,'redraw': False},
|
| 341 |
+
'transition': {'duration': 0}}],
|
| 342 |
+
'label': k, 'method': 'animate'} for k in range(len(scores))
|
| 343 |
+
]
|
| 344 |
+
}]
|
| 345 |
+
|
| 346 |
+
fig.update_layout(updatemenus=updatemenus,
|
| 347 |
+
sliders=sliders,
|
| 348 |
+
)
|
| 349 |
+
fig.update(frames=frames)
|
| 350 |
+
return fig
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def transform_to_pil(output, alpha=0.3):
|
| 354 |
+
# Transform img with torch
|
| 355 |
+
img = torch.moveaxis(prep_for_plot(output['img']),-1,0)
|
| 356 |
+
img=T.ToPILImage()(img)
|
| 357 |
+
|
| 358 |
+
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
| 359 |
+
labels = np.array(output['linear_preds'])-1
|
| 360 |
+
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
| 361 |
+
|
| 362 |
+
# Overlay labels with img wit alpha
|
| 363 |
+
background = img.convert("RGBA")
|
| 364 |
+
overlay = label.convert("RGBA")
|
| 365 |
+
|
| 366 |
+
labeled_img = Image.blend(background, overlay, alpha)
|
| 367 |
+
|
| 368 |
+
return img, label, labeled_img
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def prep_for_plot(img, rescale=True, resize=None):
|
| 372 |
+
if resize is not None:
|
| 373 |
+
img = F.interpolate(img.unsqueeze(0), resize, mode="bilinear")
|
| 374 |
+
else:
|
| 375 |
+
img = img.unsqueeze(0)
|
| 376 |
+
|
| 377 |
+
plot_img = unnorm(img).squeeze(0).cpu().permute(1, 2, 0)
|
| 378 |
+
if rescale:
|
| 379 |
+
plot_img = (plot_img - plot_img.min()) / (plot_img.max() - plot_img.min())
|
| 380 |
+
return plot_img
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def add_plot(writer, name, step):
|
| 384 |
+
buf = io.BytesIO()
|
| 385 |
+
plt.savefig(buf, format='jpeg', dpi=100)
|
| 386 |
+
buf.seek(0)
|
| 387 |
+
image = Image.open(buf)
|
| 388 |
+
image = T.ToTensor()(image)
|
| 389 |
+
writer.add_image(name, image, step)
|
| 390 |
+
plt.clf()
|
| 391 |
+
plt.close()
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
@torch.jit.script
|
| 395 |
+
def shuffle(x):
|
| 396 |
+
return x[torch.randperm(x.shape[0])]
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def add_hparams_fixed(writer, hparam_dict, metric_dict, global_step):
|
| 400 |
+
exp, ssi, sei = hparams(hparam_dict, metric_dict)
|
| 401 |
+
writer.file_writer.add_summary(exp)
|
| 402 |
+
writer.file_writer.add_summary(ssi)
|
| 403 |
+
writer.file_writer.add_summary(sei)
|
| 404 |
+
for k, v in metric_dict.items():
|
| 405 |
+
writer.add_scalar(k, v, global_step)
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
@torch.jit.script
|
| 409 |
+
def resize(classes: torch.Tensor, size: int):
|
| 410 |
+
return F.interpolate(classes, (size, size), mode="bilinear", align_corners=False)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def one_hot_feats(labels, n_classes):
|
| 414 |
+
return F.one_hot(labels, n_classes).permute(0, 3, 1, 2).to(torch.float32)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def load_model(model_type, data_dir):
|
| 418 |
+
if model_type == "robust_resnet50":
|
| 419 |
+
model = models.resnet50(pretrained=False)
|
| 420 |
+
model_file = join(data_dir, 'imagenet_l2_3_0.pt')
|
| 421 |
+
if not os.path.exists(model_file):
|
| 422 |
+
wget.download("http://6.869.csail.mit.edu/fa19/psets19/pset6/imagenet_l2_3_0.pt",
|
| 423 |
+
model_file)
|
| 424 |
+
model_weights = torch.load(model_file)
|
| 425 |
+
model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
|
| 426 |
+
'model' in name}
|
| 427 |
+
model.load_state_dict(model_weights_modified)
|
| 428 |
+
model = nn.Sequential(*list(model.children())[:-1])
|
| 429 |
+
elif model_type == "densecl":
|
| 430 |
+
model = models.resnet50(pretrained=False)
|
| 431 |
+
model_file = join(data_dir, 'densecl_r50_coco_1600ep.pth')
|
| 432 |
+
if not os.path.exists(model_file):
|
| 433 |
+
wget.download("https://cloudstor.aarnet.edu.au/plus/s/3GapXiWuVAzdKwJ/download",
|
| 434 |
+
model_file)
|
| 435 |
+
model_weights = torch.load(model_file)
|
| 436 |
+
# model_weights_modified = {name.split('model.')[1]: value for name, value in model_weights['model'].items() if
|
| 437 |
+
# 'model' in name}
|
| 438 |
+
model.load_state_dict(model_weights['state_dict'], strict=False)
|
| 439 |
+
model = nn.Sequential(*list(model.children())[:-1])
|
| 440 |
+
elif model_type == "resnet50":
|
| 441 |
+
model = models.resnet50(pretrained=True)
|
| 442 |
+
model = nn.Sequential(*list(model.children())[:-1])
|
| 443 |
+
elif model_type == "mocov2":
|
| 444 |
+
model = models.resnet50(pretrained=False)
|
| 445 |
+
model_file = join(data_dir, 'moco_v2_800ep_pretrain.pth.tar')
|
| 446 |
+
if not os.path.exists(model_file):
|
| 447 |
+
wget.download("https://dl.fbaipublicfiles.com/moco/moco_checkpoints/"
|
| 448 |
+
"moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar", model_file)
|
| 449 |
+
checkpoint = torch.load(model_file)
|
| 450 |
+
# rename moco pre-trained keys
|
| 451 |
+
state_dict = checkpoint['state_dict']
|
| 452 |
+
for k in list(state_dict.keys()):
|
| 453 |
+
# retain only encoder_q up to before the embedding layer
|
| 454 |
+
if k.startswith('module.encoder_q') and not k.startswith('module.encoder_q.fc'):
|
| 455 |
+
# remove prefix
|
| 456 |
+
state_dict[k[len("module.encoder_q."):]] = state_dict[k]
|
| 457 |
+
# delete renamed or unused k
|
| 458 |
+
del state_dict[k]
|
| 459 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
| 460 |
+
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
|
| 461 |
+
model = nn.Sequential(*list(model.children())[:-1])
|
| 462 |
+
elif model_type == "densenet121":
|
| 463 |
+
model = models.densenet121(pretrained=True)
|
| 464 |
+
model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
|
| 465 |
+
elif model_type == "vgg11":
|
| 466 |
+
model = models.vgg11(pretrained=True)
|
| 467 |
+
model = nn.Sequential(*list(model.children())[:-1] + [nn.AdaptiveAvgPool2d((1, 1))])
|
| 468 |
+
else:
|
| 469 |
+
raise ValueError("No model: {} found".format(model_type))
|
| 470 |
+
|
| 471 |
+
model.eval()
|
| 472 |
+
model.cuda()
|
| 473 |
+
return model
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
class UnNormalize(object):
|
| 477 |
+
def __init__(self, mean, std):
|
| 478 |
+
self.mean = mean
|
| 479 |
+
self.std = std
|
| 480 |
+
|
| 481 |
+
def __call__(self, image):
|
| 482 |
+
image2 = torch.clone(image)
|
| 483 |
+
for t, m, s in zip(image2, self.mean, self.std):
|
| 484 |
+
t.mul_(s).add_(m)
|
| 485 |
+
return image2
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 489 |
+
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class ToTargetTensor(object):
|
| 493 |
+
def __call__(self, target):
|
| 494 |
+
return torch.as_tensor(np.array(target), dtype=torch.int64).unsqueeze(0)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
def prep_args():
|
| 498 |
+
import sys
|
| 499 |
+
|
| 500 |
+
old_args = sys.argv
|
| 501 |
+
new_args = [old_args.pop(0)]
|
| 502 |
+
while len(old_args) > 0:
|
| 503 |
+
arg = old_args.pop(0)
|
| 504 |
+
if len(arg.split("=")) == 2:
|
| 505 |
+
new_args.append(arg)
|
| 506 |
+
elif arg.startswith("--"):
|
| 507 |
+
new_args.append(arg[2:] + "=" + old_args.pop(0))
|
| 508 |
+
else:
|
| 509 |
+
raise ValueError("Unexpected arg style {}".format(arg))
|
| 510 |
+
sys.argv = new_args
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def get_transform(res, is_label, crop_type):
|
| 514 |
+
if crop_type == "center":
|
| 515 |
+
cropper = T.CenterCrop(res)
|
| 516 |
+
elif crop_type == "random":
|
| 517 |
+
cropper = T.RandomCrop(res)
|
| 518 |
+
elif crop_type is None:
|
| 519 |
+
cropper = T.Lambda(lambda x: x)
|
| 520 |
+
res = (res, res)
|
| 521 |
+
else:
|
| 522 |
+
raise ValueError("Unknown Cropper {}".format(crop_type))
|
| 523 |
+
if is_label:
|
| 524 |
+
return T.Compose([T.Resize(res, Image.NEAREST),
|
| 525 |
+
cropper,
|
| 526 |
+
ToTargetTensor()])
|
| 527 |
+
else:
|
| 528 |
+
return T.Compose([T.Resize(res, Image.NEAREST),
|
| 529 |
+
cropper,
|
| 530 |
+
T.ToTensor(),
|
| 531 |
+
normalize])
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
def _remove_axes(ax):
|
| 535 |
+
ax.xaxis.set_major_formatter(plt.NullFormatter())
|
| 536 |
+
ax.yaxis.set_major_formatter(plt.NullFormatter())
|
| 537 |
+
ax.set_xticks([])
|
| 538 |
+
ax.set_yticks([])
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def remove_axes(axes):
|
| 542 |
+
if len(axes.shape) == 2:
|
| 543 |
+
for ax1 in axes:
|
| 544 |
+
for ax in ax1:
|
| 545 |
+
_remove_axes(ax)
|
| 546 |
+
else:
|
| 547 |
+
for ax in axes:
|
| 548 |
+
_remove_axes(ax)
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
class UnsupervisedMetrics(Metric):
|
| 552 |
+
def __init__(self, prefix: str, n_classes: int, extra_clusters: int, compute_hungarian: bool,
|
| 553 |
+
dist_sync_on_step=True):
|
| 554 |
+
# call `self.add_state`for every internal state that is needed for the metrics computations
|
| 555 |
+
# dist_reduce_fx indicates the function that should be used to reduce
|
| 556 |
+
# state from multiple processes
|
| 557 |
+
super().__init__(dist_sync_on_step=dist_sync_on_step)
|
| 558 |
+
|
| 559 |
+
self.n_classes = n_classes
|
| 560 |
+
self.extra_clusters = extra_clusters
|
| 561 |
+
self.compute_hungarian = compute_hungarian
|
| 562 |
+
self.prefix = prefix
|
| 563 |
+
self.add_state("stats",
|
| 564 |
+
default=torch.zeros(n_classes + self.extra_clusters, n_classes, dtype=torch.int64),
|
| 565 |
+
dist_reduce_fx="sum")
|
| 566 |
+
|
| 567 |
+
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
| 568 |
+
with torch.no_grad():
|
| 569 |
+
actual = target.reshape(-1)
|
| 570 |
+
preds = preds.reshape(-1)
|
| 571 |
+
mask = (actual >= 0) & (actual < self.n_classes) & (preds >= 0) & (preds < self.n_classes)
|
| 572 |
+
actual = actual[mask]
|
| 573 |
+
preds = preds[mask]
|
| 574 |
+
self.stats += torch.bincount(
|
| 575 |
+
(self.n_classes + self.extra_clusters) * actual + preds,
|
| 576 |
+
minlength=self.n_classes * (self.n_classes + self.extra_clusters)) \
|
| 577 |
+
.reshape(self.n_classes, self.n_classes + self.extra_clusters).t().to(self.stats.device)
|
| 578 |
+
|
| 579 |
+
def map_clusters(self, clusters):
|
| 580 |
+
if self.extra_clusters == 0:
|
| 581 |
+
return torch.tensor(self.assignments[1])[clusters]
|
| 582 |
+
else:
|
| 583 |
+
missing = sorted(list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0])))
|
| 584 |
+
cluster_to_class = self.assignments[1]
|
| 585 |
+
for missing_entry in missing:
|
| 586 |
+
if missing_entry == cluster_to_class.shape[0]:
|
| 587 |
+
cluster_to_class = np.append(cluster_to_class, -1)
|
| 588 |
+
else:
|
| 589 |
+
cluster_to_class = np.insert(cluster_to_class, missing_entry + 1, -1)
|
| 590 |
+
cluster_to_class = torch.tensor(cluster_to_class)
|
| 591 |
+
return cluster_to_class[clusters]
|
| 592 |
+
|
| 593 |
+
def compute(self):
|
| 594 |
+
if self.compute_hungarian:
|
| 595 |
+
self.assignments = linear_sum_assignment(self.stats.detach().cpu(), maximize=True)
|
| 596 |
+
# print(self.assignments)
|
| 597 |
+
if self.extra_clusters == 0:
|
| 598 |
+
self.histogram = self.stats[np.argsort(self.assignments[1]), :]
|
| 599 |
+
if self.extra_clusters > 0:
|
| 600 |
+
self.assignments_t = linear_sum_assignment(self.stats.detach().cpu().t(), maximize=True)
|
| 601 |
+
histogram = self.stats[self.assignments_t[1], :]
|
| 602 |
+
missing = list(set(range(self.n_classes + self.extra_clusters)) - set(self.assignments[0]))
|
| 603 |
+
new_row = self.stats[missing, :].sum(0, keepdim=True)
|
| 604 |
+
histogram = torch.cat([histogram, new_row], axis=0)
|
| 605 |
+
new_col = torch.zeros(self.n_classes + 1, 1, device=histogram.device)
|
| 606 |
+
self.histogram = torch.cat([histogram, new_col], axis=1)
|
| 607 |
+
else:
|
| 608 |
+
self.assignments = (torch.arange(self.n_classes).unsqueeze(1),
|
| 609 |
+
torch.arange(self.n_classes).unsqueeze(1))
|
| 610 |
+
self.histogram = self.stats
|
| 611 |
+
|
| 612 |
+
tp = torch.diag(self.histogram)
|
| 613 |
+
fp = torch.sum(self.histogram, dim=0) - tp
|
| 614 |
+
fn = torch.sum(self.histogram, dim=1) - tp
|
| 615 |
+
|
| 616 |
+
iou = tp / (tp + fp + fn)
|
| 617 |
+
prc = tp / (tp + fn)
|
| 618 |
+
opc = torch.sum(tp) / torch.sum(self.histogram)
|
| 619 |
+
|
| 620 |
+
metric_dict = {self.prefix + "mIoU": iou[~torch.isnan(iou)].mean().item(),
|
| 621 |
+
self.prefix + "Accuracy": opc.item()}
|
| 622 |
+
return {k: 100 * v for k, v in metric_dict.items()}
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
def flexible_collate(batch):
|
| 626 |
+
r"""Puts each data field into a tensor with outer dimension batch size"""
|
| 627 |
+
|
| 628 |
+
elem = batch[0]
|
| 629 |
+
elem_type = type(elem)
|
| 630 |
+
if isinstance(elem, torch.Tensor):
|
| 631 |
+
out = None
|
| 632 |
+
if torch.utils.data.get_worker_info() is not None:
|
| 633 |
+
# If we're in a background process, concatenate directly into a
|
| 634 |
+
# shared memory tensor to avoid an extra copy
|
| 635 |
+
numel = sum([x.numel() for x in batch])
|
| 636 |
+
storage = elem.storage()._new_shared(numel)
|
| 637 |
+
out = elem.new(storage)
|
| 638 |
+
try:
|
| 639 |
+
return torch.stack(batch, 0, out=out)
|
| 640 |
+
except RuntimeError:
|
| 641 |
+
return batch
|
| 642 |
+
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
|
| 643 |
+
and elem_type.__name__ != 'string_':
|
| 644 |
+
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
|
| 645 |
+
# array of string classes and object
|
| 646 |
+
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
|
| 647 |
+
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
|
| 648 |
+
|
| 649 |
+
return flexible_collate([torch.as_tensor(b) for b in batch])
|
| 650 |
+
elif elem.shape == (): # scalars
|
| 651 |
+
return torch.as_tensor(batch)
|
| 652 |
+
elif isinstance(elem, float):
|
| 653 |
+
return torch.tensor(batch, dtype=torch.float64)
|
| 654 |
+
elif isinstance(elem, int):
|
| 655 |
+
return torch.tensor(batch)
|
| 656 |
+
elif isinstance(elem, string_classes):
|
| 657 |
+
return batch
|
| 658 |
+
elif isinstance(elem, collections.abc.Mapping):
|
| 659 |
+
return {key: flexible_collate([d[key] for d in batch]) for key in elem}
|
| 660 |
+
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
|
| 661 |
+
return elem_type(*(flexible_collate(samples) for samples in zip(*batch)))
|
| 662 |
+
elif isinstance(elem, collections.abc.Sequence):
|
| 663 |
+
# check to make sure that the elements in batch have consistent size
|
| 664 |
+
it = iter(batch)
|
| 665 |
+
elem_size = len(next(it))
|
| 666 |
+
if not all(len(elem) == elem_size for elem in it):
|
| 667 |
+
raise RuntimeError('each element in list of batch should be of equal size')
|
| 668 |
+
transposed = zip(*batch)
|
| 669 |
+
return [flexible_collate(samples) for samples in transposed]
|
| 670 |
+
|
| 671 |
+
raise TypeError(default_collate_err_msg_format.format(elem_type))
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
if __name__ == "__main__":
|
| 675 |
+
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
biomap/utils.py
CHANGED
|
@@ -3,6 +3,9 @@ import os
|
|
| 3 |
from os.path import join
|
| 4 |
import io
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import numpy as np
|
| 8 |
import torch.multiprocessing
|
|
@@ -79,8 +82,73 @@ def compute_biodiv_score(class_image):
|
|
| 79 |
}
|
| 80 |
return score, score_details
|
| 81 |
|
| 82 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 85 |
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 86 |
|
|
@@ -91,12 +159,10 @@ def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
|
| 91 |
y=scores[:i+1],
|
| 92 |
mode="lines+markers+text",
|
| 93 |
marker_color="black",
|
| 94 |
-
text = [f"{score:.
|
| 95 |
textposition="top center"
|
| 96 |
) for i in range(len(scores))
|
| 97 |
]
|
| 98 |
-
# scatters = [go.Scatter(y=scores[:i], mode="lines+markers+text", marker_color="black", text = scores[:i], textposition="top center") for i in range(len(scores))]
|
| 99 |
-
|
| 100 |
|
| 101 |
# Scores
|
| 102 |
fig = make_subplots(
|
|
@@ -152,7 +218,7 @@ def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
|
| 152 |
mode='immediate'
|
| 153 |
)])],
|
| 154 |
direction= 'left',
|
| 155 |
-
pad=dict(
|
| 156 |
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
| 157 |
]
|
| 158 |
|
|
@@ -174,17 +240,34 @@ def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
|
| 174 |
fr.update(
|
| 175 |
layout={
|
| 176 |
"xaxis": {
|
| 177 |
-
"range": [0,imgs[0].shape[1]+i/100000]
|
|
|
|
|
|
|
|
|
|
| 178 |
},
|
| 179 |
"yaxis": {
|
| 180 |
-
"range": [imgs[0].shape[0]+i/100000,0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
},
|
| 182 |
})
|
| 183 |
-
|
| 184 |
-
fr.update(layout_title_text= months[i])
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
|
|
|
| 188 |
fig.update(
|
| 189 |
layout={
|
| 190 |
"xaxis": {
|
|
@@ -215,20 +298,14 @@ def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
|
| 215 |
|
| 216 |
|
| 217 |
"xaxis3": {
|
| 218 |
-
"
|
| 219 |
-
"
|
| 220 |
-
"tickvals": months,
|
| 221 |
-
"range": [0,len(months)]
|
| 222 |
-
# 'showgrid': False, # thin lines in the background
|
| 223 |
-
# 'zeroline': False, # thick line at y=0
|
| 224 |
-
# 'visible': True,
|
| 225 |
},
|
| 226 |
"yaxis3": {
|
| 227 |
-
|
| 228 |
-
'
|
| 229 |
-
'
|
| 230 |
-
'
|
| 231 |
-
'visible': True # thin lines in the background
|
| 232 |
}
|
| 233 |
}
|
| 234 |
)
|
|
@@ -237,13 +314,14 @@ def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
|
| 237 |
fig.update_layout(updatemenus=updatemenus,
|
| 238 |
sliders=sliders,
|
| 239 |
legend=dict(
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
| 243 |
)
|
| 244 |
|
| 245 |
|
| 246 |
-
|
| 247 |
fig.update_layout(margin=dict(b=0, r=0))
|
| 248 |
return fig
|
| 249 |
|
|
|
|
| 3 |
from os.path import join
|
| 4 |
import io
|
| 5 |
|
| 6 |
+
import datetime
|
| 7 |
+
|
| 8 |
+
from dateutil.relativedelta import relativedelta
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
import numpy as np
|
| 11 |
import torch.multiprocessing
|
|
|
|
| 82 |
}
|
| 83 |
return score, score_details
|
| 84 |
|
| 85 |
+
def plot_image(months, imgs, imgs_label, nb_values, scores):
|
| 86 |
+
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 87 |
+
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 88 |
+
|
| 89 |
+
# Scores
|
| 90 |
+
fig = make_subplots(
|
| 91 |
+
rows=1, cols=4,
|
| 92 |
+
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "indicator"}]],
|
| 93 |
+
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 97 |
+
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 98 |
+
|
| 99 |
+
fig.add_trace(go.Pie(labels = class_names,
|
| 100 |
+
values = [nb_values[0][key] for key in mapping_class.keys()],
|
| 101 |
+
marker_colors = colors,
|
| 102 |
+
name="Segment repartition",
|
| 103 |
+
textposition='inside',
|
| 104 |
+
texttemplate = "%{percent:.0%}",
|
| 105 |
+
textfont_size=14
|
| 106 |
+
),
|
| 107 |
+
row=1, col=3)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
fig.add_trace(go.Indicator(value=scores[0]), row=1, col=4)
|
| 111 |
+
fig.update_layout(
|
| 112 |
+
legend=dict(
|
| 113 |
+
xanchor = "center",
|
| 114 |
+
yanchor="top",
|
| 115 |
+
y=-0.1,
|
| 116 |
+
x = 0.5,
|
| 117 |
+
orientation="h")
|
| 118 |
+
)
|
| 119 |
+
fig.update(
|
| 120 |
+
layout={
|
| 121 |
+
"xaxis": {
|
| 122 |
+
"range": [0,imgs[0].shape[1]+1/100000],
|
| 123 |
+
'showgrid': False, # thin lines in the background
|
| 124 |
+
'zeroline': False, # thick line at x=0
|
| 125 |
+
'visible': False, # numbers below
|
| 126 |
+
},
|
| 127 |
|
| 128 |
+
"yaxis": {
|
| 129 |
+
"range": [imgs[0].shape[0]+1/100000,0],
|
| 130 |
+
'showgrid': False, # thin lines in the background
|
| 131 |
+
'zeroline': False, # thick line at y=0
|
| 132 |
+
'visible': False,},
|
| 133 |
+
"xaxis1": {
|
| 134 |
+
"range": [0,imgs[0].shape[1]+1/100000],
|
| 135 |
+
'showgrid': False, # thin lines in the background
|
| 136 |
+
'zeroline': False, # thick line at x=0
|
| 137 |
+
'visible': False, # numbers below
|
| 138 |
+
},
|
| 139 |
+
|
| 140 |
+
"yaxis1": {
|
| 141 |
+
"range": [imgs[0].shape[0]+1/100000,0],
|
| 142 |
+
'showgrid': False, # thin lines in the background
|
| 143 |
+
'zeroline': False, # thick line at y=0
|
| 144 |
+
'visible': False,}
|
| 145 |
+
|
| 146 |
+
},)
|
| 147 |
+
fig.update_xaxes(row=1, col=2, visible=False)
|
| 148 |
+
fig.update_yaxes(row=1, col=2, visible=False)
|
| 149 |
+
return fig
|
| 150 |
+
|
| 151 |
+
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
| 152 |
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 153 |
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 154 |
|
|
|
|
| 159 |
y=scores[:i+1],
|
| 160 |
mode="lines+markers+text",
|
| 161 |
marker_color="black",
|
| 162 |
+
text = [f"{score:.2f}" for score in scores[:i+1]],
|
| 163 |
textposition="top center"
|
| 164 |
) for i in range(len(scores))
|
| 165 |
]
|
|
|
|
|
|
|
| 166 |
|
| 167 |
# Scores
|
| 168 |
fig = make_subplots(
|
|
|
|
| 218 |
mode='immediate'
|
| 219 |
)])],
|
| 220 |
direction= 'left',
|
| 221 |
+
pad=dict(t=85),
|
| 222 |
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
| 223 |
]
|
| 224 |
|
|
|
|
| 240 |
fr.update(
|
| 241 |
layout={
|
| 242 |
"xaxis": {
|
| 243 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
| 244 |
+
'showgrid': False, # thin lines in the background
|
| 245 |
+
'zeroline': False, # thick line at x=0
|
| 246 |
+
'visible': False, # numbers below
|
| 247 |
},
|
| 248 |
"yaxis": {
|
| 249 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
| 250 |
+
'showgrid': False, # thin lines in the background
|
| 251 |
+
'zeroline': False, # thick line at x=0
|
| 252 |
+
'visible': False, # numbers below
|
| 253 |
+
},
|
| 254 |
+
"xaxis1": {
|
| 255 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
| 256 |
+
'showgrid': False, # thin lines in the background
|
| 257 |
+
'zeroline': False, # thick line at x=0
|
| 258 |
+
'visible': False, # numbers below
|
| 259 |
+
},
|
| 260 |
+
"yaxis1": {
|
| 261 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
| 262 |
+
'showgrid': False, # thin lines in the background
|
| 263 |
+
'zeroline': False, # thick line at x=0
|
| 264 |
+
'visible': False, # numbers below
|
| 265 |
},
|
| 266 |
})
|
|
|
|
|
|
|
| 267 |
|
| 268 |
+
start_date = datetime.datetime.strptime(months[0], "%Y-%m-%d") - relativedelta(months=1)
|
| 269 |
+
end_date = datetime.datetime.strptime(months[-1], "%Y-%m-%d") + relativedelta(months=1)
|
| 270 |
+
interval = [start_date.strftime("%Y-%m-%d"),end_date.strftime("%Y-%m-%d")]
|
| 271 |
fig.update(
|
| 272 |
layout={
|
| 273 |
"xaxis": {
|
|
|
|
| 298 |
|
| 299 |
|
| 300 |
"xaxis3": {
|
| 301 |
+
"dtick":"M3",
|
| 302 |
+
"range":interval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
},
|
| 304 |
"yaxis3": {
|
| 305 |
+
'range': [min(scores)*0.9, max(scores)* 1.1],
|
| 306 |
+
'showgrid': False,
|
| 307 |
+
'zeroline': False,
|
| 308 |
+
'visible': True
|
|
|
|
| 309 |
}
|
| 310 |
}
|
| 311 |
)
|
|
|
|
| 314 |
fig.update_layout(updatemenus=updatemenus,
|
| 315 |
sliders=sliders,
|
| 316 |
legend=dict(
|
| 317 |
+
xanchor = "center",
|
| 318 |
+
yanchor="top",
|
| 319 |
+
y=-0.1,
|
| 320 |
+
x = 0.5,
|
| 321 |
+
orientation="h")
|
| 322 |
)
|
| 323 |
|
| 324 |
|
|
|
|
| 325 |
fig.update_layout(margin=dict(b=0, r=0))
|
| 326 |
return fig
|
| 327 |
|
biomap/utils_gee.py
CHANGED
|
@@ -12,9 +12,10 @@ service_account = 'cvimg-355@cvimg-377115.iam.gserviceaccount.com'
|
|
| 12 |
credentials = ee.ServiceAccountCredentials(service_account, os.path.join(os.path.dirname(__file__), '.private-key.json'))
|
| 13 |
ee.Initialize(credentials)
|
| 14 |
|
| 15 |
-
def
|
| 16 |
logging.info(f"getting image for {d1} to {d2} at location {location}")
|
| 17 |
img = extract_img(location, d1, d2)
|
|
|
|
| 18 |
img_test = transform_ee_img(
|
| 19 |
img, max=0.3
|
| 20 |
)
|
|
@@ -125,7 +126,6 @@ def extract_np_from_url(url):
|
|
| 125 |
temp1.append(temp2)
|
| 126 |
|
| 127 |
data = np.array(temp1)
|
| 128 |
-
|
| 129 |
return data
|
| 130 |
|
| 131 |
#Fonction globale
|
|
@@ -145,7 +145,9 @@ def extract_img(location,start_date,end_date, width = 0.01 , len = 0.01,scale=5)
|
|
| 145 |
"""
|
| 146 |
ee_img, geometry = extract_ee_img(location, width,start_date,end_date , len)
|
| 147 |
url = get_url(ee_img, geometry, scale)
|
|
|
|
| 148 |
img = extract_np_from_url(url)
|
|
|
|
| 149 |
|
| 150 |
return img
|
| 151 |
|
|
|
|
| 12 |
credentials = ee.ServiceAccountCredentials(service_account, os.path.join(os.path.dirname(__file__), '.private-key.json'))
|
| 13 |
ee.Initialize(credentials)
|
| 14 |
|
| 15 |
+
def get_url(location, d1, d2):
|
| 16 |
logging.info(f"getting image for {d1} to {d2} at location {location}")
|
| 17 |
img = extract_img(location, d1, d2)
|
| 18 |
+
|
| 19 |
img_test = transform_ee_img(
|
| 20 |
img, max=0.3
|
| 21 |
)
|
|
|
|
| 126 |
temp1.append(temp2)
|
| 127 |
|
| 128 |
data = np.array(temp1)
|
|
|
|
| 129 |
return data
|
| 130 |
|
| 131 |
#Fonction globale
|
|
|
|
| 145 |
"""
|
| 146 |
ee_img, geometry = extract_ee_img(location, width,start_date,end_date , len)
|
| 147 |
url = get_url(ee_img, geometry, scale)
|
| 148 |
+
logging.info(f"got url image for {start_date} to {end_date}")
|
| 149 |
img = extract_np_from_url(url)
|
| 150 |
+
logging.info(f"Downloaded image for {start_date} to {end_date}")
|
| 151 |
|
| 152 |
return img
|
| 153 |
|