Spaces:
Runtime error
Runtime error
Commit
·
f49b1cc
1
Parent(s):
f186d18
Update biomap/plot_functions.py
Browse files- biomap/plot_functions.py +777 -777
biomap/plot_functions.py
CHANGED
|
@@ -1,778 +1,778 @@
|
|
| 1 |
-
from PIL import Image
|
| 2 |
-
|
| 3 |
-
import hydra
|
| 4 |
-
import matplotlib as mpl
|
| 5 |
-
from utils import prep_for_plot
|
| 6 |
-
|
| 7 |
-
import torch.multiprocessing
|
| 8 |
-
import torchvision.transforms as T
|
| 9 |
-
# import matplotlib.pyplot as plt
|
| 10 |
-
from model import LitUnsupervisedSegmenter
|
| 11 |
-
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
| 12 |
-
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 13 |
-
cmap = mpl.colors.ListedColormap(colors)
|
| 14 |
-
#from train_segmentation import LitUnsupervisedSegmenter, cmap
|
| 15 |
-
|
| 16 |
-
from utils_gee import extract_img, transform_ee_img
|
| 17 |
-
|
| 18 |
-
import plotly.graph_objects as go
|
| 19 |
-
import plotly.express as px
|
| 20 |
-
import numpy as np
|
| 21 |
-
from plotly.subplots import make_subplots
|
| 22 |
-
|
| 23 |
-
import os
|
| 24 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
| 28 |
-
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 29 |
-
scores_init = [2,3,4,3,1,4,0]
|
| 30 |
-
|
| 31 |
-
# Import model configs
|
| 32 |
-
hydra.initialize(config_path="configs", job_name="corine")
|
| 33 |
-
cfg = hydra.compose(config_name="my_train_config.yml")
|
| 34 |
-
|
| 35 |
-
nbclasses = cfg.dir_dataset_n_classes
|
| 36 |
-
|
| 37 |
-
# Load Model
|
| 38 |
-
model_path = "checkpoint/model/model.pt"
|
| 39 |
-
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
| 40 |
-
|
| 41 |
-
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
| 42 |
-
model.load_state_dict(saved_state_dict)
|
| 43 |
-
|
| 44 |
-
from PIL import Image
|
| 45 |
-
|
| 46 |
-
import hydra
|
| 47 |
-
|
| 48 |
-
from utils import prep_for_plot
|
| 49 |
-
|
| 50 |
-
import torch.multiprocessing
|
| 51 |
-
import torchvision.transforms as T
|
| 52 |
-
# import matplotlib.pyplot as plt
|
| 53 |
-
|
| 54 |
-
from model import LitUnsupervisedSegmenter
|
| 55 |
-
|
| 56 |
-
from utils_gee import extract_img, transform_ee_img
|
| 57 |
-
|
| 58 |
-
import plotly.graph_objects as go
|
| 59 |
-
import plotly.express as px
|
| 60 |
-
import numpy as np
|
| 61 |
-
from plotly.subplots import make_subplots
|
| 62 |
-
|
| 63 |
-
import os
|
| 64 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
| 68 |
-
cmap = mpl.colors.ListedColormap(colors)
|
| 69 |
-
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 70 |
-
scores_init = [2,3,4,3,1,4,0]
|
| 71 |
-
|
| 72 |
-
# Import model configs
|
| 73 |
-
#hydra.initialize(config_path="configs", job_name="corine")
|
| 74 |
-
cfg = hydra.compose(config_name="my_train_config.yml")
|
| 75 |
-
|
| 76 |
-
nbclasses = cfg.dir_dataset_n_classes
|
| 77 |
-
|
| 78 |
-
# Load Model
|
| 79 |
-
model_path = "checkpoint/model/model.pt"
|
| 80 |
-
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
| 81 |
-
|
| 82 |
-
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
| 83 |
-
model.load_state_dict(saved_state_dict)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
#normalize img
|
| 87 |
-
preprocess = T.Compose([
|
| 88 |
-
T.ToPILImage(),
|
| 89 |
-
T.Resize((320,320)),
|
| 90 |
-
# T.CenterCrop(224),
|
| 91 |
-
T.ToTensor(),
|
| 92 |
-
T.Normalize(
|
| 93 |
-
mean=[0.485, 0.456, 0.406],
|
| 94 |
-
std=[0.229, 0.224, 0.225]
|
| 95 |
-
)
|
| 96 |
-
])
|
| 97 |
-
|
| 98 |
-
# Function that look for img on EE and segment it
|
| 99 |
-
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
| 100 |
-
|
| 101 |
-
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
| 102 |
-
if how == 'month':
|
| 103 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
| 104 |
-
elif how == 'year' :
|
| 105 |
-
if year_end == None :
|
| 106 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 107 |
-
else :
|
| 108 |
-
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
img_test= transform_ee_img(img, max = 0.25)
|
| 112 |
-
|
| 113 |
-
# Preprocess opened img
|
| 114 |
-
x = preprocess(img_test)
|
| 115 |
-
x = torch.unsqueeze(x, dim=0).cpu()
|
| 116 |
-
# model=model.cpu()
|
| 117 |
-
|
| 118 |
-
with torch.no_grad():
|
| 119 |
-
feats, code = model.net(x)
|
| 120 |
-
linear_preds = model.linear_probe(x, code)
|
| 121 |
-
linear_preds = linear_preds.argmax(1)
|
| 122 |
-
outputs = {
|
| 123 |
-
'img': x[:model.cfg.n_images].detach().cpu(),
|
| 124 |
-
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
| 125 |
-
}
|
| 126 |
-
return outputs
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# Function that look for all img on EE and extract all segments with the date as first output arg
|
| 130 |
-
|
| 131 |
-
def segment_group(location, start_date, end_date, how = 'month') :
|
| 132 |
-
outputs = []
|
| 133 |
-
st_month = int(start_date[5:7])
|
| 134 |
-
end_month = int(end_date[5:7])
|
| 135 |
-
|
| 136 |
-
st_year = int(start_date[0:4])
|
| 137 |
-
end_year = int(end_date[0:4])
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
for year in range(st_year, end_year+1) :
|
| 142 |
-
|
| 143 |
-
if year != end_year :
|
| 144 |
-
last = 12
|
| 145 |
-
else :
|
| 146 |
-
last = end_month
|
| 147 |
-
|
| 148 |
-
if year != st_year:
|
| 149 |
-
start = 1
|
| 150 |
-
else :
|
| 151 |
-
start = st_month
|
| 152 |
-
|
| 153 |
-
if how == 'month' :
|
| 154 |
-
for month in range(start, last + 1):
|
| 155 |
-
month_str = f"{month:0>2d}"
|
| 156 |
-
year_str = str(year)
|
| 157 |
-
|
| 158 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
| 159 |
-
|
| 160 |
-
elif how == 'year' :
|
| 161 |
-
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
| 162 |
-
|
| 163 |
-
elif how == '2months' :
|
| 164 |
-
for month in range(start, last + 1):
|
| 165 |
-
month_str = f"{month:0>2d}"
|
| 166 |
-
year_str = str(year)
|
| 167 |
-
month_end = (month) % 12 +1
|
| 168 |
-
if month_end < month :
|
| 169 |
-
year_end = year +1
|
| 170 |
-
else :
|
| 171 |
-
year_end = year
|
| 172 |
-
month_end= f"{month_end:0>2d}"
|
| 173 |
-
year_end = str(year_end)
|
| 174 |
-
|
| 175 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
return outputs
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
# Function that transforms an output to PIL images
|
| 182 |
-
|
| 183 |
-
def transform_to_pil(outputs,alpha=0.3):
|
| 184 |
-
# Transform img with torch
|
| 185 |
-
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
| 186 |
-
img=T.ToPILImage()(img)
|
| 187 |
-
|
| 188 |
-
# Transform label by saving it then open it
|
| 189 |
-
# label = outputs['linear_preds'][0]
|
| 190 |
-
# plt.imsave('label.png',label,cmap=cmap)
|
| 191 |
-
# label = Image.open('label.png')
|
| 192 |
-
|
| 193 |
-
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
| 194 |
-
labels = np.array(outputs['linear_preds'][0])-1
|
| 195 |
-
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
# Overlay labels with img wit alpha
|
| 199 |
-
background = img.convert("RGBA")
|
| 200 |
-
overlay = label.convert("RGBA")
|
| 201 |
-
|
| 202 |
-
labeled_img = Image.blend(background, overlay, alpha)
|
| 203 |
-
|
| 204 |
-
return img, label, labeled_img
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
| 209 |
-
|
| 210 |
-
def values_from_output(output):
|
| 211 |
-
imgs = transform_to_pil(output,alpha = 0.3)
|
| 212 |
-
|
| 213 |
-
img = imgs[0]
|
| 214 |
-
img = np.array(img.convert('RGB'))
|
| 215 |
-
|
| 216 |
-
labeled_img = imgs[2]
|
| 217 |
-
labeled_img = np.array(labeled_img.convert('RGB'))
|
| 218 |
-
|
| 219 |
-
nb_values = []
|
| 220 |
-
for i in range(7):
|
| 221 |
-
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
| 222 |
-
|
| 223 |
-
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
| 224 |
-
|
| 225 |
-
return img, labeled_img, nb_values, score
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
# Function that extract from outputs (from segment_group function) all dates/ all images
|
| 229 |
-
def values_from_outputs(outputs) :
|
| 230 |
-
months = []
|
| 231 |
-
imgs = []
|
| 232 |
-
imgs_label = []
|
| 233 |
-
nb_values = []
|
| 234 |
-
scores = []
|
| 235 |
-
|
| 236 |
-
for output in outputs:
|
| 237 |
-
img, labeled_img, nb_value, score = values_from_output(output[1])
|
| 238 |
-
months.append(output[0])
|
| 239 |
-
imgs.append(img)
|
| 240 |
-
imgs_label.append(labeled_img)
|
| 241 |
-
nb_values.append(nb_value)
|
| 242 |
-
scores.append(score)
|
| 243 |
-
|
| 244 |
-
return months, imgs, imgs_label, nb_values, scores
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
| 249 |
-
|
| 250 |
-
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 251 |
-
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 252 |
-
|
| 253 |
-
# Scores
|
| 254 |
-
scatters = []
|
| 255 |
-
temp = []
|
| 256 |
-
for score in scores :
|
| 257 |
-
temp_score = []
|
| 258 |
-
temp_date = []
|
| 259 |
-
score = scores[i]
|
| 260 |
-
temp.append(score)
|
| 261 |
-
text_temp = ["" for i in temp]
|
| 262 |
-
text_temp[-1] = str(round(score,2))
|
| 263 |
-
scatters.append(go.Scatter(x=text_temp, y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
# Scores
|
| 267 |
-
fig = make_subplots(
|
| 268 |
-
rows=1, cols=4,
|
| 269 |
-
# specs=[[{"rowspan": 2}, {"rowspan": 2}, {"type": "pie"}, None]]
|
| 270 |
-
# row_heights=[0.8, 0.2],
|
| 271 |
-
column_widths = [0.6, 0.6,0.3, 0.3],
|
| 272 |
-
subplot_titles=("Localisation visualization", "labeled visualisation", "Segments repartition", "Biodiversity scores")
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 276 |
-
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 277 |
-
|
| 278 |
-
fig.add_trace(go.Pie(labels = class_names,
|
| 279 |
-
values = nb_values[0],
|
| 280 |
-
marker_colors = colors,
|
| 281 |
-
name="Segment repartition",
|
| 282 |
-
textposition='inside',
|
| 283 |
-
texttemplate = "%{percent:.0%}",
|
| 284 |
-
textfont_size=14
|
| 285 |
-
),
|
| 286 |
-
row=1, col=3)
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
fig.add_trace(scatters[0], row=1, col=4)
|
| 290 |
-
# fig.add_annotation(text='score:' + str(scores[0]),
|
| 291 |
-
# showarrow=False,
|
| 292 |
-
# row=2, col=2)
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
number_frames = len(imgs)
|
| 296 |
-
frames = [dict(
|
| 297 |
-
name = k,
|
| 298 |
-
data = [ fig2["frames"][k]["data"][0],
|
| 299 |
-
fig3["frames"][k]["data"][0],
|
| 300 |
-
go.Pie(labels = class_names,
|
| 301 |
-
values = nb_values[k],
|
| 302 |
-
marker_colors = colors,
|
| 303 |
-
name="Segment repartition",
|
| 304 |
-
textposition='inside',
|
| 305 |
-
texttemplate = "%{percent:.0%}",
|
| 306 |
-
textfont_size=14
|
| 307 |
-
),
|
| 308 |
-
scatters[k]
|
| 309 |
-
],
|
| 310 |
-
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
| 311 |
-
# that are updated by the above three go.Scatter instances
|
| 312 |
-
) for k in range(number_frames)]
|
| 313 |
-
|
| 314 |
-
updatemenus = [dict(type='buttons',
|
| 315 |
-
buttons=[dict(label='Play',
|
| 316 |
-
method='animate',
|
| 317 |
-
args=[[f'{k}' for k in range(number_frames)],
|
| 318 |
-
dict(frame=dict(duration=500, redraw=False),
|
| 319 |
-
transition=dict(duration=0),
|
| 320 |
-
easing='linear',
|
| 321 |
-
fromcurrent=True,
|
| 322 |
-
mode='immediate'
|
| 323 |
-
)])],
|
| 324 |
-
direction= 'left',
|
| 325 |
-
pad=dict(r= 10, t=85),
|
| 326 |
-
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
| 327 |
-
]
|
| 328 |
-
|
| 329 |
-
sliders = [{'yanchor': 'top',
|
| 330 |
-
'xanchor': 'left',
|
| 331 |
-
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
| 332 |
-
'transition': {'duration': 500.0, 'easing': 'linear'},
|
| 333 |
-
'pad': {'b': 10, 't': 50},
|
| 334 |
-
'len': 0.9, 'x': 0.1, 'y': 0,
|
| 335 |
-
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
| 336 |
-
'transition': {'duration': 0, 'easing': 'linear'}}],
|
| 337 |
-
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
| 338 |
-
]}]
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
fig.update(frames=frames)
|
| 342 |
-
|
| 343 |
-
for i,fr in enumerate(fig["frames"]):
|
| 344 |
-
fr.update(
|
| 345 |
-
layout={
|
| 346 |
-
"xaxis": {
|
| 347 |
-
"range": [0,imgs[0].shape[1]+i/100000]
|
| 348 |
-
},
|
| 349 |
-
"yaxis": {
|
| 350 |
-
"range": [imgs[0].shape[0]+i/100000,0]
|
| 351 |
-
},
|
| 352 |
-
})
|
| 353 |
-
|
| 354 |
-
fr.update(layout_title_text= months[i])
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
fig.update(layout_title_text= 'tot')
|
| 358 |
-
fig.update(
|
| 359 |
-
layout={
|
| 360 |
-
"xaxis": {
|
| 361 |
-
"range": [0,imgs[0].shape[1]+i/100000],
|
| 362 |
-
'showgrid': False, # thin lines in the background
|
| 363 |
-
'zeroline': False, # thick line at x=0
|
| 364 |
-
'visible': False, # numbers below
|
| 365 |
-
},
|
| 366 |
-
|
| 367 |
-
"yaxis": {
|
| 368 |
-
"range": [imgs[0].shape[0]+i/100000,0],
|
| 369 |
-
'showgrid': False, # thin lines in the background
|
| 370 |
-
'zeroline': False, # thick line at y=0
|
| 371 |
-
'visible': False,},
|
| 372 |
-
|
| 373 |
-
"xaxis3": {
|
| 374 |
-
"range": [0,len(scores)+1],
|
| 375 |
-
'autorange': False, # thin lines in the background
|
| 376 |
-
'showgrid': False, # thin lines in the background
|
| 377 |
-
'zeroline': False, # thick line at y=0
|
| 378 |
-
'visible': False
|
| 379 |
-
},
|
| 380 |
-
|
| 381 |
-
"yaxis3": {
|
| 382 |
-
"range": [0,1.5],
|
| 383 |
-
'autorange': False,
|
| 384 |
-
'showgrid': False, # thin lines in the background
|
| 385 |
-
'zeroline': False, # thick line at y=0
|
| 386 |
-
'visible': False # thin lines in the background
|
| 387 |
-
}
|
| 388 |
-
},
|
| 389 |
-
legend=dict(
|
| 390 |
-
yanchor="bottom",
|
| 391 |
-
y=0.99,
|
| 392 |
-
xanchor="center",
|
| 393 |
-
x=0.01
|
| 394 |
-
)
|
| 395 |
-
)
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
fig.update_layout(updatemenus=updatemenus,
|
| 399 |
-
sliders=sliders)
|
| 400 |
-
|
| 401 |
-
fig.update_layout(margin=dict(b=0, r=0))
|
| 402 |
-
|
| 403 |
-
# fig.show() #in jupyter notebook
|
| 404 |
-
|
| 405 |
-
return fig
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
# Last function (global one)
|
| 410 |
-
# how = 'month' or '2months' or 'year'
|
| 411 |
-
|
| 412 |
-
def segment_region(location, start_date, end_date, how = 'month'):
|
| 413 |
-
|
| 414 |
-
#extract the outputs for each image
|
| 415 |
-
outputs = segment_group(location, start_date, end_date, how = how)
|
| 416 |
-
|
| 417 |
-
#extract the intersting values from image
|
| 418 |
-
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
| 419 |
-
|
| 420 |
-
#Create the figure
|
| 421 |
-
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
| 422 |
-
|
| 423 |
-
return fig
|
| 424 |
-
#normalize img
|
| 425 |
-
preprocess = T.Compose([
|
| 426 |
-
T.ToPILImage(),
|
| 427 |
-
T.Resize((320,320)),
|
| 428 |
-
# T.CenterCrop(224),
|
| 429 |
-
T.ToTensor(),
|
| 430 |
-
T.Normalize(
|
| 431 |
-
mean=[0.485, 0.456, 0.406],
|
| 432 |
-
std=[0.229, 0.224, 0.225]
|
| 433 |
-
)
|
| 434 |
-
])
|
| 435 |
-
|
| 436 |
-
# Function that look for img on EE and segment it
|
| 437 |
-
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
| 438 |
-
|
| 439 |
-
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
| 440 |
-
if how == 'month':
|
| 441 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
| 442 |
-
elif how == 'year' :
|
| 443 |
-
if year_end == None :
|
| 444 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 445 |
-
else :
|
| 446 |
-
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
img_test= transform_ee_img(img, max = 0.25)
|
| 450 |
-
|
| 451 |
-
# Preprocess opened img
|
| 452 |
-
x = preprocess(img_test)
|
| 453 |
-
x = torch.unsqueeze(x, dim=0).cpu()
|
| 454 |
-
# model=model.cpu()
|
| 455 |
-
|
| 456 |
-
with torch.no_grad():
|
| 457 |
-
feats, code = model.net(x)
|
| 458 |
-
linear_preds = model.linear_probe(x, code)
|
| 459 |
-
linear_preds = linear_preds.argmax(1)
|
| 460 |
-
outputs = {
|
| 461 |
-
'img': x[:model.cfg.n_images].detach().cpu(),
|
| 462 |
-
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
| 463 |
-
}
|
| 464 |
-
return outputs
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
# Function that look for all img on EE and extract all segments with the date as first output arg
|
| 468 |
-
|
| 469 |
-
def segment_group(location, start_date, end_date, how = 'month') :
|
| 470 |
-
outputs = []
|
| 471 |
-
st_month = int(start_date[5:7])
|
| 472 |
-
end_month = int(end_date[5:7])
|
| 473 |
-
|
| 474 |
-
st_year = int(start_date[0:4])
|
| 475 |
-
end_year = int(end_date[0:4])
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
for year in range(st_year, end_year+1) :
|
| 480 |
-
|
| 481 |
-
if year != end_year :
|
| 482 |
-
last = 12
|
| 483 |
-
else :
|
| 484 |
-
last = end_month
|
| 485 |
-
|
| 486 |
-
if year != st_year:
|
| 487 |
-
start = 1
|
| 488 |
-
else :
|
| 489 |
-
start = st_month
|
| 490 |
-
|
| 491 |
-
if how == 'month' :
|
| 492 |
-
for month in range(start, last + 1):
|
| 493 |
-
month_str = f"{month:0>2d}"
|
| 494 |
-
year_str = str(year)
|
| 495 |
-
|
| 496 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
| 497 |
-
|
| 498 |
-
elif how == 'year' :
|
| 499 |
-
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
| 500 |
-
|
| 501 |
-
elif how == '2months' :
|
| 502 |
-
for month in range(start, last + 1):
|
| 503 |
-
month_str = f"{month:0>2d}"
|
| 504 |
-
year_str = str(year)
|
| 505 |
-
month_end = (month) % 12 +1
|
| 506 |
-
if month_end < month :
|
| 507 |
-
year_end = year +1
|
| 508 |
-
else :
|
| 509 |
-
year_end = year
|
| 510 |
-
month_end= f"{month_end:0>2d}"
|
| 511 |
-
year_end = str(year_end)
|
| 512 |
-
|
| 513 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
return outputs
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
# Function that transforms an output to PIL images
|
| 520 |
-
|
| 521 |
-
def transform_to_pil(outputs,alpha=0.3):
|
| 522 |
-
# Transform img with torch
|
| 523 |
-
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
| 524 |
-
img=T.ToPILImage()(img)
|
| 525 |
-
|
| 526 |
-
# Transform label by saving it then open it
|
| 527 |
-
# label = outputs['linear_preds'][0]
|
| 528 |
-
# plt.imsave('label.png',label,cmap=cmap)
|
| 529 |
-
# label = Image.open('label.png')
|
| 530 |
-
|
| 531 |
-
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
| 532 |
-
labels = np.array(outputs['linear_preds'][0])-1
|
| 533 |
-
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
# Overlay labels with img wit alpha
|
| 537 |
-
background = img.convert("RGBA")
|
| 538 |
-
overlay = label.convert("RGBA")
|
| 539 |
-
|
| 540 |
-
labeled_img = Image.blend(background, overlay, alpha)
|
| 541 |
-
|
| 542 |
-
return img, label, labeled_img
|
| 543 |
-
|
| 544 |
-
def values_from_output(output):
|
| 545 |
-
imgs = transform_to_pil(output,alpha = 0.3)
|
| 546 |
-
|
| 547 |
-
img = imgs[0]
|
| 548 |
-
img = np.array(img.convert('RGB'))
|
| 549 |
-
|
| 550 |
-
labeled_img = imgs[2]
|
| 551 |
-
labeled_img = np.array(labeled_img.convert('RGB'))
|
| 552 |
-
|
| 553 |
-
nb_values = []
|
| 554 |
-
for i in range(7):
|
| 555 |
-
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
| 556 |
-
|
| 557 |
-
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
| 558 |
-
|
| 559 |
-
return img, labeled_img, nb_values, score
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
# Function that extract from outputs (from segment_group function) all dates/ all images
|
| 567 |
-
def values_from_outputs(outputs) :
|
| 568 |
-
months = []
|
| 569 |
-
imgs = []
|
| 570 |
-
imgs_label = []
|
| 571 |
-
nb_values = []
|
| 572 |
-
scores = []
|
| 573 |
-
|
| 574 |
-
for output in outputs:
|
| 575 |
-
img, labeled_img, nb_value, score = values_from_output(output[1])
|
| 576 |
-
months.append(output[0])
|
| 577 |
-
imgs.append(img)
|
| 578 |
-
imgs_label.append(labeled_img)
|
| 579 |
-
nb_values.append(nb_value)
|
| 580 |
-
scores.append(score)
|
| 581 |
-
|
| 582 |
-
return months, imgs, imgs_label, nb_values, scores
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
| 587 |
-
|
| 588 |
-
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 589 |
-
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 590 |
-
|
| 591 |
-
# Scores
|
| 592 |
-
scatters = []
|
| 593 |
-
temp = []
|
| 594 |
-
for score in scores :
|
| 595 |
-
temp_score = []
|
| 596 |
-
temp_date = []
|
| 597 |
-
#score = scores[i]
|
| 598 |
-
temp.append(score)
|
| 599 |
-
n = len(temp)
|
| 600 |
-
text_temp = ["" for i in temp]
|
| 601 |
-
text_temp[-1] = str(round(score,2))
|
| 602 |
-
scatters.append(go.Scatter(x=[0,1], y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
| 603 |
-
print(text_temp)
|
| 604 |
-
|
| 605 |
-
# Scores
|
| 606 |
-
fig = make_subplots(
|
| 607 |
-
rows=1, cols=4,
|
| 608 |
-
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
|
| 609 |
-
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
|
| 610 |
-
)
|
| 611 |
-
|
| 612 |
-
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 613 |
-
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 614 |
-
|
| 615 |
-
fig.add_trace(go.Pie(labels = class_names,
|
| 616 |
-
values = nb_values[0],
|
| 617 |
-
marker_colors = colors,
|
| 618 |
-
name="Segment repartition",
|
| 619 |
-
textposition='inside',
|
| 620 |
-
texttemplate = "%{percent:.0%}",
|
| 621 |
-
textfont_size=14
|
| 622 |
-
),
|
| 623 |
-
row=1, col=3)
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
fig.add_trace(scatters[0], row=1, col=4)
|
| 627 |
-
fig.update_traces(showlegend=False, selector=dict(type='scatter'))
|
| 628 |
-
#fig.update_traces(, selector=dict(type='scatter'))
|
| 629 |
-
# fig.add_annotation(text='score:' + str(scores[0]),
|
| 630 |
-
# showarrow=False,
|
| 631 |
-
# row=2, col=2)
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
number_frames = len(imgs)
|
| 635 |
-
frames = [dict(
|
| 636 |
-
name = k,
|
| 637 |
-
data = [ fig2["frames"][k]["data"][0],
|
| 638 |
-
fig3["frames"][k]["data"][0],
|
| 639 |
-
go.Pie(labels = class_names,
|
| 640 |
-
values = nb_values[k],
|
| 641 |
-
marker_colors = colors,
|
| 642 |
-
name="Segment repartition",
|
| 643 |
-
textposition='inside',
|
| 644 |
-
texttemplate = "%{percent:.0%}",
|
| 645 |
-
textfont_size=14
|
| 646 |
-
),
|
| 647 |
-
scatters[k]
|
| 648 |
-
],
|
| 649 |
-
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
| 650 |
-
# that are updated by the above three go.Scatter instances
|
| 651 |
-
) for k in range(number_frames)]
|
| 652 |
-
|
| 653 |
-
updatemenus = [dict(type='buttons',
|
| 654 |
-
buttons=[dict(label='Play',
|
| 655 |
-
method='animate',
|
| 656 |
-
args=[[f'{k}' for k in range(number_frames)],
|
| 657 |
-
dict(frame=dict(duration=500, redraw=False),
|
| 658 |
-
transition=dict(duration=0),
|
| 659 |
-
easing='linear',
|
| 660 |
-
fromcurrent=True,
|
| 661 |
-
mode='immediate'
|
| 662 |
-
)])],
|
| 663 |
-
direction= 'left',
|
| 664 |
-
pad=dict(r= 10, t=85),
|
| 665 |
-
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
| 666 |
-
]
|
| 667 |
-
|
| 668 |
-
sliders = [{'yanchor': 'top',
|
| 669 |
-
'xanchor': 'left',
|
| 670 |
-
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
| 671 |
-
'transition': {'duration': 500.0, 'easing': 'linear'},
|
| 672 |
-
'pad': {'b': 10, 't': 50},
|
| 673 |
-
'len': 0.9, 'x': 0.1, 'y': 0,
|
| 674 |
-
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
| 675 |
-
'transition': {'duration': 0, 'easing': 'linear'}}],
|
| 676 |
-
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
| 677 |
-
]}]
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
fig.update(frames=frames)
|
| 681 |
-
|
| 682 |
-
for i,fr in enumerate(fig["frames"]):
|
| 683 |
-
fr.update(
|
| 684 |
-
layout={
|
| 685 |
-
"xaxis": {
|
| 686 |
-
"range": [0,imgs[0].shape[1]+i/100000]
|
| 687 |
-
},
|
| 688 |
-
"yaxis": {
|
| 689 |
-
"range": [imgs[0].shape[0]+i/100000,0]
|
| 690 |
-
},
|
| 691 |
-
})
|
| 692 |
-
|
| 693 |
-
fr.update(layout_title_text= months[i])
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
fig.update(layout_title_text= months[0])
|
| 697 |
-
fig.update(
|
| 698 |
-
layout={
|
| 699 |
-
"xaxis": {
|
| 700 |
-
"range": [0,imgs[0].shape[1]+i/100000],
|
| 701 |
-
'showgrid': False, # thin lines in the background
|
| 702 |
-
'zeroline': False, # thick line at x=0
|
| 703 |
-
'visible': False, # numbers below
|
| 704 |
-
},
|
| 705 |
-
|
| 706 |
-
"yaxis": {
|
| 707 |
-
"range": [imgs[0].shape[0]+i/100000,0],
|
| 708 |
-
'showgrid': False, # thin lines in the background
|
| 709 |
-
'zeroline': False, # thick line at y=0
|
| 710 |
-
'visible': False,},
|
| 711 |
-
|
| 712 |
-
"xaxis2": {
|
| 713 |
-
"range": [0,imgs[0].shape[1]+i/100000],
|
| 714 |
-
'showgrid': False, # thin lines in the background
|
| 715 |
-
'zeroline': False, # thick line at x=0
|
| 716 |
-
'visible': False, # numbers below
|
| 717 |
-
},
|
| 718 |
-
|
| 719 |
-
"yaxis2": {
|
| 720 |
-
"range": [imgs[0].shape[0]+i/100000,0],
|
| 721 |
-
'showgrid': False, # thin lines in the background
|
| 722 |
-
'zeroline': False, # thick line at y=0
|
| 723 |
-
'visible': False,},
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
"xaxis3": {
|
| 727 |
-
"range": [0,len(scores)+1],
|
| 728 |
-
'autorange': False, # thin lines in the background
|
| 729 |
-
'showgrid': False, # thin lines in the background
|
| 730 |
-
'zeroline': False, # thick line at y=0
|
| 731 |
-
'visible': False
|
| 732 |
-
},
|
| 733 |
-
|
| 734 |
-
"yaxis3": {
|
| 735 |
-
"range": [0,1.5],
|
| 736 |
-
'autorange': False,
|
| 737 |
-
'showgrid': False, # thin lines in the background
|
| 738 |
-
'zeroline': False, # thick line at y=0
|
| 739 |
-
'visible': False # thin lines in the background
|
| 740 |
-
}
|
| 741 |
-
}
|
| 742 |
-
)
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
fig.update_layout(updatemenus=updatemenus,
|
| 746 |
-
sliders=sliders,
|
| 747 |
-
legend=dict(
|
| 748 |
-
yanchor= 'top',
|
| 749 |
-
xanchor= 'left',
|
| 750 |
-
orientation="h")
|
| 751 |
-
)
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
fig.update_layout(margin=dict(b=0, r=0))
|
| 755 |
-
|
| 756 |
-
# fig.show() #in jupyter notebook
|
| 757 |
-
|
| 758 |
-
return fig
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
# Last function (global one)
|
| 763 |
-
# how = 'month' or '2months' or 'year'
|
| 764 |
-
|
| 765 |
-
def segment_region(latitude, longitude, start_date, end_date, how = 'month'):
|
| 766 |
-
location = [float(latitude),float(longitude)]
|
| 767 |
-
how = how[0]
|
| 768 |
-
#extract the outputs for each image
|
| 769 |
-
outputs = segment_group(location, start_date, end_date, how = how)
|
| 770 |
-
|
| 771 |
-
#extract the intersting values from image
|
| 772 |
-
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
#Create the figure
|
| 776 |
-
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
| 777 |
-
|
| 778 |
return fig
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
|
| 3 |
+
import hydra
|
| 4 |
+
import matplotlib as mpl
|
| 5 |
+
from utils import prep_for_plot
|
| 6 |
+
|
| 7 |
+
import torch.multiprocessing
|
| 8 |
+
import torchvision.transforms as T
|
| 9 |
+
# import matplotlib.pyplot as plt
|
| 10 |
+
from model import LitUnsupervisedSegmenter
|
| 11 |
+
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
| 12 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 13 |
+
cmap = mpl.colors.ListedColormap(colors)
|
| 14 |
+
#from train_segmentation import LitUnsupervisedSegmenter, cmap
|
| 15 |
+
|
| 16 |
+
from utils_gee import extract_img, transform_ee_img
|
| 17 |
+
|
| 18 |
+
import plotly.graph_objects as go
|
| 19 |
+
import plotly.express as px
|
| 20 |
+
import numpy as np
|
| 21 |
+
from plotly.subplots import make_subplots
|
| 22 |
+
|
| 23 |
+
import os
|
| 24 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
| 28 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 29 |
+
scores_init = [2,3,4,3,1,4,0]
|
| 30 |
+
|
| 31 |
+
# Import model configs
|
| 32 |
+
hydra.initialize(config_path="configs", job_name="corine")
|
| 33 |
+
cfg = hydra.compose(config_name="my_train_config.yml")
|
| 34 |
+
|
| 35 |
+
nbclasses = cfg.dir_dataset_n_classes
|
| 36 |
+
|
| 37 |
+
# Load Model
|
| 38 |
+
model_path = "biomap/checkpoint/model/model.pt"
|
| 39 |
+
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
| 40 |
+
|
| 41 |
+
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
| 42 |
+
model.load_state_dict(saved_state_dict)
|
| 43 |
+
|
| 44 |
+
from PIL import Image
|
| 45 |
+
|
| 46 |
+
import hydra
|
| 47 |
+
|
| 48 |
+
from utils import prep_for_plot
|
| 49 |
+
|
| 50 |
+
import torch.multiprocessing
|
| 51 |
+
import torchvision.transforms as T
|
| 52 |
+
# import matplotlib.pyplot as plt
|
| 53 |
+
|
| 54 |
+
from model import LitUnsupervisedSegmenter
|
| 55 |
+
|
| 56 |
+
from utils_gee import extract_img, transform_ee_img
|
| 57 |
+
|
| 58 |
+
import plotly.graph_objects as go
|
| 59 |
+
import plotly.express as px
|
| 60 |
+
import numpy as np
|
| 61 |
+
from plotly.subplots import make_subplots
|
| 62 |
+
|
| 63 |
+
import os
|
| 64 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
| 68 |
+
cmap = mpl.colors.ListedColormap(colors)
|
| 69 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
| 70 |
+
scores_init = [2,3,4,3,1,4,0]
|
| 71 |
+
|
| 72 |
+
# Import model configs
|
| 73 |
+
#hydra.initialize(config_path="configs", job_name="corine")
|
| 74 |
+
cfg = hydra.compose(config_name="my_train_config.yml")
|
| 75 |
+
|
| 76 |
+
nbclasses = cfg.dir_dataset_n_classes
|
| 77 |
+
|
| 78 |
+
# Load Model
|
| 79 |
+
model_path = "biomap/checkpoint/model/model.pt"
|
| 80 |
+
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
| 81 |
+
|
| 82 |
+
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
| 83 |
+
model.load_state_dict(saved_state_dict)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
#normalize img
|
| 87 |
+
preprocess = T.Compose([
|
| 88 |
+
T.ToPILImage(),
|
| 89 |
+
T.Resize((320,320)),
|
| 90 |
+
# T.CenterCrop(224),
|
| 91 |
+
T.ToTensor(),
|
| 92 |
+
T.Normalize(
|
| 93 |
+
mean=[0.485, 0.456, 0.406],
|
| 94 |
+
std=[0.229, 0.224, 0.225]
|
| 95 |
+
)
|
| 96 |
+
])
|
| 97 |
+
|
| 98 |
+
# Function that look for img on EE and segment it
|
| 99 |
+
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
| 100 |
+
|
| 101 |
+
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
| 102 |
+
if how == 'month':
|
| 103 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
| 104 |
+
elif how == 'year' :
|
| 105 |
+
if year_end == None :
|
| 106 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 107 |
+
else :
|
| 108 |
+
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
img_test= transform_ee_img(img, max = 0.25)
|
| 112 |
+
|
| 113 |
+
# Preprocess opened img
|
| 114 |
+
x = preprocess(img_test)
|
| 115 |
+
x = torch.unsqueeze(x, dim=0).cpu()
|
| 116 |
+
# model=model.cpu()
|
| 117 |
+
|
| 118 |
+
with torch.no_grad():
|
| 119 |
+
feats, code = model.net(x)
|
| 120 |
+
linear_preds = model.linear_probe(x, code)
|
| 121 |
+
linear_preds = linear_preds.argmax(1)
|
| 122 |
+
outputs = {
|
| 123 |
+
'img': x[:model.cfg.n_images].detach().cpu(),
|
| 124 |
+
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
| 125 |
+
}
|
| 126 |
+
return outputs
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Function that look for all img on EE and extract all segments with the date as first output arg
|
| 130 |
+
|
| 131 |
+
def segment_group(location, start_date, end_date, how = 'month') :
|
| 132 |
+
outputs = []
|
| 133 |
+
st_month = int(start_date[5:7])
|
| 134 |
+
end_month = int(end_date[5:7])
|
| 135 |
+
|
| 136 |
+
st_year = int(start_date[0:4])
|
| 137 |
+
end_year = int(end_date[0:4])
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
for year in range(st_year, end_year+1) :
|
| 142 |
+
|
| 143 |
+
if year != end_year :
|
| 144 |
+
last = 12
|
| 145 |
+
else :
|
| 146 |
+
last = end_month
|
| 147 |
+
|
| 148 |
+
if year != st_year:
|
| 149 |
+
start = 1
|
| 150 |
+
else :
|
| 151 |
+
start = st_month
|
| 152 |
+
|
| 153 |
+
if how == 'month' :
|
| 154 |
+
for month in range(start, last + 1):
|
| 155 |
+
month_str = f"{month:0>2d}"
|
| 156 |
+
year_str = str(year)
|
| 157 |
+
|
| 158 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
| 159 |
+
|
| 160 |
+
elif how == 'year' :
|
| 161 |
+
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
| 162 |
+
|
| 163 |
+
elif how == '2months' :
|
| 164 |
+
for month in range(start, last + 1):
|
| 165 |
+
month_str = f"{month:0>2d}"
|
| 166 |
+
year_str = str(year)
|
| 167 |
+
month_end = (month) % 12 +1
|
| 168 |
+
if month_end < month :
|
| 169 |
+
year_end = year +1
|
| 170 |
+
else :
|
| 171 |
+
year_end = year
|
| 172 |
+
month_end= f"{month_end:0>2d}"
|
| 173 |
+
year_end = str(year_end)
|
| 174 |
+
|
| 175 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
return outputs
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# Function that transforms an output to PIL images
|
| 182 |
+
|
| 183 |
+
def transform_to_pil(outputs,alpha=0.3):
|
| 184 |
+
# Transform img with torch
|
| 185 |
+
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
| 186 |
+
img=T.ToPILImage()(img)
|
| 187 |
+
|
| 188 |
+
# Transform label by saving it then open it
|
| 189 |
+
# label = outputs['linear_preds'][0]
|
| 190 |
+
# plt.imsave('label.png',label,cmap=cmap)
|
| 191 |
+
# label = Image.open('label.png')
|
| 192 |
+
|
| 193 |
+
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
| 194 |
+
labels = np.array(outputs['linear_preds'][0])-1
|
| 195 |
+
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# Overlay labels with img wit alpha
|
| 199 |
+
background = img.convert("RGBA")
|
| 200 |
+
overlay = label.convert("RGBA")
|
| 201 |
+
|
| 202 |
+
labeled_img = Image.blend(background, overlay, alpha)
|
| 203 |
+
|
| 204 |
+
return img, label, labeled_img
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
| 209 |
+
|
| 210 |
+
def values_from_output(output):
|
| 211 |
+
imgs = transform_to_pil(output,alpha = 0.3)
|
| 212 |
+
|
| 213 |
+
img = imgs[0]
|
| 214 |
+
img = np.array(img.convert('RGB'))
|
| 215 |
+
|
| 216 |
+
labeled_img = imgs[2]
|
| 217 |
+
labeled_img = np.array(labeled_img.convert('RGB'))
|
| 218 |
+
|
| 219 |
+
nb_values = []
|
| 220 |
+
for i in range(7):
|
| 221 |
+
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
| 222 |
+
|
| 223 |
+
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
| 224 |
+
|
| 225 |
+
return img, labeled_img, nb_values, score
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Function that extract from outputs (from segment_group function) all dates/ all images
|
| 229 |
+
def values_from_outputs(outputs) :
|
| 230 |
+
months = []
|
| 231 |
+
imgs = []
|
| 232 |
+
imgs_label = []
|
| 233 |
+
nb_values = []
|
| 234 |
+
scores = []
|
| 235 |
+
|
| 236 |
+
for output in outputs:
|
| 237 |
+
img, labeled_img, nb_value, score = values_from_output(output[1])
|
| 238 |
+
months.append(output[0])
|
| 239 |
+
imgs.append(img)
|
| 240 |
+
imgs_label.append(labeled_img)
|
| 241 |
+
nb_values.append(nb_value)
|
| 242 |
+
scores.append(score)
|
| 243 |
+
|
| 244 |
+
return months, imgs, imgs_label, nb_values, scores
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
| 249 |
+
|
| 250 |
+
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 251 |
+
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 252 |
+
|
| 253 |
+
# Scores
|
| 254 |
+
scatters = []
|
| 255 |
+
temp = []
|
| 256 |
+
for score in scores :
|
| 257 |
+
temp_score = []
|
| 258 |
+
temp_date = []
|
| 259 |
+
score = scores[i]
|
| 260 |
+
temp.append(score)
|
| 261 |
+
text_temp = ["" for i in temp]
|
| 262 |
+
text_temp[-1] = str(round(score,2))
|
| 263 |
+
scatters.append(go.Scatter(x=text_temp, y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
# Scores
|
| 267 |
+
fig = make_subplots(
|
| 268 |
+
rows=1, cols=4,
|
| 269 |
+
# specs=[[{"rowspan": 2}, {"rowspan": 2}, {"type": "pie"}, None]]
|
| 270 |
+
# row_heights=[0.8, 0.2],
|
| 271 |
+
column_widths = [0.6, 0.6,0.3, 0.3],
|
| 272 |
+
subplot_titles=("Localisation visualization", "labeled visualisation", "Segments repartition", "Biodiversity scores")
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 276 |
+
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 277 |
+
|
| 278 |
+
fig.add_trace(go.Pie(labels = class_names,
|
| 279 |
+
values = nb_values[0],
|
| 280 |
+
marker_colors = colors,
|
| 281 |
+
name="Segment repartition",
|
| 282 |
+
textposition='inside',
|
| 283 |
+
texttemplate = "%{percent:.0%}",
|
| 284 |
+
textfont_size=14
|
| 285 |
+
),
|
| 286 |
+
row=1, col=3)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
fig.add_trace(scatters[0], row=1, col=4)
|
| 290 |
+
# fig.add_annotation(text='score:' + str(scores[0]),
|
| 291 |
+
# showarrow=False,
|
| 292 |
+
# row=2, col=2)
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
number_frames = len(imgs)
|
| 296 |
+
frames = [dict(
|
| 297 |
+
name = k,
|
| 298 |
+
data = [ fig2["frames"][k]["data"][0],
|
| 299 |
+
fig3["frames"][k]["data"][0],
|
| 300 |
+
go.Pie(labels = class_names,
|
| 301 |
+
values = nb_values[k],
|
| 302 |
+
marker_colors = colors,
|
| 303 |
+
name="Segment repartition",
|
| 304 |
+
textposition='inside',
|
| 305 |
+
texttemplate = "%{percent:.0%}",
|
| 306 |
+
textfont_size=14
|
| 307 |
+
),
|
| 308 |
+
scatters[k]
|
| 309 |
+
],
|
| 310 |
+
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
| 311 |
+
# that are updated by the above three go.Scatter instances
|
| 312 |
+
) for k in range(number_frames)]
|
| 313 |
+
|
| 314 |
+
updatemenus = [dict(type='buttons',
|
| 315 |
+
buttons=[dict(label='Play',
|
| 316 |
+
method='animate',
|
| 317 |
+
args=[[f'{k}' for k in range(number_frames)],
|
| 318 |
+
dict(frame=dict(duration=500, redraw=False),
|
| 319 |
+
transition=dict(duration=0),
|
| 320 |
+
easing='linear',
|
| 321 |
+
fromcurrent=True,
|
| 322 |
+
mode='immediate'
|
| 323 |
+
)])],
|
| 324 |
+
direction= 'left',
|
| 325 |
+
pad=dict(r= 10, t=85),
|
| 326 |
+
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
| 327 |
+
]
|
| 328 |
+
|
| 329 |
+
sliders = [{'yanchor': 'top',
|
| 330 |
+
'xanchor': 'left',
|
| 331 |
+
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
| 332 |
+
'transition': {'duration': 500.0, 'easing': 'linear'},
|
| 333 |
+
'pad': {'b': 10, 't': 50},
|
| 334 |
+
'len': 0.9, 'x': 0.1, 'y': 0,
|
| 335 |
+
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
| 336 |
+
'transition': {'duration': 0, 'easing': 'linear'}}],
|
| 337 |
+
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
| 338 |
+
]}]
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
fig.update(frames=frames)
|
| 342 |
+
|
| 343 |
+
for i,fr in enumerate(fig["frames"]):
|
| 344 |
+
fr.update(
|
| 345 |
+
layout={
|
| 346 |
+
"xaxis": {
|
| 347 |
+
"range": [0,imgs[0].shape[1]+i/100000]
|
| 348 |
+
},
|
| 349 |
+
"yaxis": {
|
| 350 |
+
"range": [imgs[0].shape[0]+i/100000,0]
|
| 351 |
+
},
|
| 352 |
+
})
|
| 353 |
+
|
| 354 |
+
fr.update(layout_title_text= months[i])
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
fig.update(layout_title_text= 'tot')
|
| 358 |
+
fig.update(
|
| 359 |
+
layout={
|
| 360 |
+
"xaxis": {
|
| 361 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
| 362 |
+
'showgrid': False, # thin lines in the background
|
| 363 |
+
'zeroline': False, # thick line at x=0
|
| 364 |
+
'visible': False, # numbers below
|
| 365 |
+
},
|
| 366 |
+
|
| 367 |
+
"yaxis": {
|
| 368 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
| 369 |
+
'showgrid': False, # thin lines in the background
|
| 370 |
+
'zeroline': False, # thick line at y=0
|
| 371 |
+
'visible': False,},
|
| 372 |
+
|
| 373 |
+
"xaxis3": {
|
| 374 |
+
"range": [0,len(scores)+1],
|
| 375 |
+
'autorange': False, # thin lines in the background
|
| 376 |
+
'showgrid': False, # thin lines in the background
|
| 377 |
+
'zeroline': False, # thick line at y=0
|
| 378 |
+
'visible': False
|
| 379 |
+
},
|
| 380 |
+
|
| 381 |
+
"yaxis3": {
|
| 382 |
+
"range": [0,1.5],
|
| 383 |
+
'autorange': False,
|
| 384 |
+
'showgrid': False, # thin lines in the background
|
| 385 |
+
'zeroline': False, # thick line at y=0
|
| 386 |
+
'visible': False # thin lines in the background
|
| 387 |
+
}
|
| 388 |
+
},
|
| 389 |
+
legend=dict(
|
| 390 |
+
yanchor="bottom",
|
| 391 |
+
y=0.99,
|
| 392 |
+
xanchor="center",
|
| 393 |
+
x=0.01
|
| 394 |
+
)
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
fig.update_layout(updatemenus=updatemenus,
|
| 399 |
+
sliders=sliders)
|
| 400 |
+
|
| 401 |
+
fig.update_layout(margin=dict(b=0, r=0))
|
| 402 |
+
|
| 403 |
+
# fig.show() #in jupyter notebook
|
| 404 |
+
|
| 405 |
+
return fig
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
# Last function (global one)
|
| 410 |
+
# how = 'month' or '2months' or 'year'
|
| 411 |
+
|
| 412 |
+
def segment_region(location, start_date, end_date, how = 'month'):
|
| 413 |
+
|
| 414 |
+
#extract the outputs for each image
|
| 415 |
+
outputs = segment_group(location, start_date, end_date, how = how)
|
| 416 |
+
|
| 417 |
+
#extract the intersting values from image
|
| 418 |
+
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
| 419 |
+
|
| 420 |
+
#Create the figure
|
| 421 |
+
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
| 422 |
+
|
| 423 |
+
return fig
|
| 424 |
+
#normalize img
|
| 425 |
+
preprocess = T.Compose([
|
| 426 |
+
T.ToPILImage(),
|
| 427 |
+
T.Resize((320,320)),
|
| 428 |
+
# T.CenterCrop(224),
|
| 429 |
+
T.ToTensor(),
|
| 430 |
+
T.Normalize(
|
| 431 |
+
mean=[0.485, 0.456, 0.406],
|
| 432 |
+
std=[0.229, 0.224, 0.225]
|
| 433 |
+
)
|
| 434 |
+
])
|
| 435 |
+
|
| 436 |
+
# Function that look for img on EE and segment it
|
| 437 |
+
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
| 438 |
+
|
| 439 |
+
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
| 440 |
+
if how == 'month':
|
| 441 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
| 442 |
+
elif how == 'year' :
|
| 443 |
+
if year_end == None :
|
| 444 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 445 |
+
else :
|
| 446 |
+
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
img_test= transform_ee_img(img, max = 0.25)
|
| 450 |
+
|
| 451 |
+
# Preprocess opened img
|
| 452 |
+
x = preprocess(img_test)
|
| 453 |
+
x = torch.unsqueeze(x, dim=0).cpu()
|
| 454 |
+
# model=model.cpu()
|
| 455 |
+
|
| 456 |
+
with torch.no_grad():
|
| 457 |
+
feats, code = model.net(x)
|
| 458 |
+
linear_preds = model.linear_probe(x, code)
|
| 459 |
+
linear_preds = linear_preds.argmax(1)
|
| 460 |
+
outputs = {
|
| 461 |
+
'img': x[:model.cfg.n_images].detach().cpu(),
|
| 462 |
+
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
| 463 |
+
}
|
| 464 |
+
return outputs
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
# Function that look for all img on EE and extract all segments with the date as first output arg
|
| 468 |
+
|
| 469 |
+
def segment_group(location, start_date, end_date, how = 'month') :
|
| 470 |
+
outputs = []
|
| 471 |
+
st_month = int(start_date[5:7])
|
| 472 |
+
end_month = int(end_date[5:7])
|
| 473 |
+
|
| 474 |
+
st_year = int(start_date[0:4])
|
| 475 |
+
end_year = int(end_date[0:4])
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
for year in range(st_year, end_year+1) :
|
| 480 |
+
|
| 481 |
+
if year != end_year :
|
| 482 |
+
last = 12
|
| 483 |
+
else :
|
| 484 |
+
last = end_month
|
| 485 |
+
|
| 486 |
+
if year != st_year:
|
| 487 |
+
start = 1
|
| 488 |
+
else :
|
| 489 |
+
start = st_month
|
| 490 |
+
|
| 491 |
+
if how == 'month' :
|
| 492 |
+
for month in range(start, last + 1):
|
| 493 |
+
month_str = f"{month:0>2d}"
|
| 494 |
+
year_str = str(year)
|
| 495 |
+
|
| 496 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
| 497 |
+
|
| 498 |
+
elif how == 'year' :
|
| 499 |
+
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
| 500 |
+
|
| 501 |
+
elif how == '2months' :
|
| 502 |
+
for month in range(start, last + 1):
|
| 503 |
+
month_str = f"{month:0>2d}"
|
| 504 |
+
year_str = str(year)
|
| 505 |
+
month_end = (month) % 12 +1
|
| 506 |
+
if month_end < month :
|
| 507 |
+
year_end = year +1
|
| 508 |
+
else :
|
| 509 |
+
year_end = year
|
| 510 |
+
month_end= f"{month_end:0>2d}"
|
| 511 |
+
year_end = str(year_end)
|
| 512 |
+
|
| 513 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
return outputs
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
# Function that transforms an output to PIL images
|
| 520 |
+
|
| 521 |
+
def transform_to_pil(outputs,alpha=0.3):
|
| 522 |
+
# Transform img with torch
|
| 523 |
+
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
| 524 |
+
img=T.ToPILImage()(img)
|
| 525 |
+
|
| 526 |
+
# Transform label by saving it then open it
|
| 527 |
+
# label = outputs['linear_preds'][0]
|
| 528 |
+
# plt.imsave('label.png',label,cmap=cmap)
|
| 529 |
+
# label = Image.open('label.png')
|
| 530 |
+
|
| 531 |
+
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
| 532 |
+
labels = np.array(outputs['linear_preds'][0])-1
|
| 533 |
+
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
# Overlay labels with img wit alpha
|
| 537 |
+
background = img.convert("RGBA")
|
| 538 |
+
overlay = label.convert("RGBA")
|
| 539 |
+
|
| 540 |
+
labeled_img = Image.blend(background, overlay, alpha)
|
| 541 |
+
|
| 542 |
+
return img, label, labeled_img
|
| 543 |
+
|
| 544 |
+
def values_from_output(output):
|
| 545 |
+
imgs = transform_to_pil(output,alpha = 0.3)
|
| 546 |
+
|
| 547 |
+
img = imgs[0]
|
| 548 |
+
img = np.array(img.convert('RGB'))
|
| 549 |
+
|
| 550 |
+
labeled_img = imgs[2]
|
| 551 |
+
labeled_img = np.array(labeled_img.convert('RGB'))
|
| 552 |
+
|
| 553 |
+
nb_values = []
|
| 554 |
+
for i in range(7):
|
| 555 |
+
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
| 556 |
+
|
| 557 |
+
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
| 558 |
+
|
| 559 |
+
return img, labeled_img, nb_values, score
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
# Function that extract from outputs (from segment_group function) all dates/ all images
|
| 567 |
+
def values_from_outputs(outputs) :
|
| 568 |
+
months = []
|
| 569 |
+
imgs = []
|
| 570 |
+
imgs_label = []
|
| 571 |
+
nb_values = []
|
| 572 |
+
scores = []
|
| 573 |
+
|
| 574 |
+
for output in outputs:
|
| 575 |
+
img, labeled_img, nb_value, score = values_from_output(output[1])
|
| 576 |
+
months.append(output[0])
|
| 577 |
+
imgs.append(img)
|
| 578 |
+
imgs_label.append(labeled_img)
|
| 579 |
+
nb_values.append(nb_value)
|
| 580 |
+
scores.append(score)
|
| 581 |
+
|
| 582 |
+
return months, imgs, imgs_label, nb_values, scores
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
| 587 |
+
|
| 588 |
+
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
| 589 |
+
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
| 590 |
+
|
| 591 |
+
# Scores
|
| 592 |
+
scatters = []
|
| 593 |
+
temp = []
|
| 594 |
+
for score in scores :
|
| 595 |
+
temp_score = []
|
| 596 |
+
temp_date = []
|
| 597 |
+
#score = scores[i]
|
| 598 |
+
temp.append(score)
|
| 599 |
+
n = len(temp)
|
| 600 |
+
text_temp = ["" for i in temp]
|
| 601 |
+
text_temp[-1] = str(round(score,2))
|
| 602 |
+
scatters.append(go.Scatter(x=[0,1], y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
| 603 |
+
print(text_temp)
|
| 604 |
+
|
| 605 |
+
# Scores
|
| 606 |
+
fig = make_subplots(
|
| 607 |
+
rows=1, cols=4,
|
| 608 |
+
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
|
| 609 |
+
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
| 613 |
+
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
| 614 |
+
|
| 615 |
+
fig.add_trace(go.Pie(labels = class_names,
|
| 616 |
+
values = nb_values[0],
|
| 617 |
+
marker_colors = colors,
|
| 618 |
+
name="Segment repartition",
|
| 619 |
+
textposition='inside',
|
| 620 |
+
texttemplate = "%{percent:.0%}",
|
| 621 |
+
textfont_size=14
|
| 622 |
+
),
|
| 623 |
+
row=1, col=3)
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
fig.add_trace(scatters[0], row=1, col=4)
|
| 627 |
+
fig.update_traces(showlegend=False, selector=dict(type='scatter'))
|
| 628 |
+
#fig.update_traces(, selector=dict(type='scatter'))
|
| 629 |
+
# fig.add_annotation(text='score:' + str(scores[0]),
|
| 630 |
+
# showarrow=False,
|
| 631 |
+
# row=2, col=2)
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
number_frames = len(imgs)
|
| 635 |
+
frames = [dict(
|
| 636 |
+
name = k,
|
| 637 |
+
data = [ fig2["frames"][k]["data"][0],
|
| 638 |
+
fig3["frames"][k]["data"][0],
|
| 639 |
+
go.Pie(labels = class_names,
|
| 640 |
+
values = nb_values[k],
|
| 641 |
+
marker_colors = colors,
|
| 642 |
+
name="Segment repartition",
|
| 643 |
+
textposition='inside',
|
| 644 |
+
texttemplate = "%{percent:.0%}",
|
| 645 |
+
textfont_size=14
|
| 646 |
+
),
|
| 647 |
+
scatters[k]
|
| 648 |
+
],
|
| 649 |
+
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
| 650 |
+
# that are updated by the above three go.Scatter instances
|
| 651 |
+
) for k in range(number_frames)]
|
| 652 |
+
|
| 653 |
+
updatemenus = [dict(type='buttons',
|
| 654 |
+
buttons=[dict(label='Play',
|
| 655 |
+
method='animate',
|
| 656 |
+
args=[[f'{k}' for k in range(number_frames)],
|
| 657 |
+
dict(frame=dict(duration=500, redraw=False),
|
| 658 |
+
transition=dict(duration=0),
|
| 659 |
+
easing='linear',
|
| 660 |
+
fromcurrent=True,
|
| 661 |
+
mode='immediate'
|
| 662 |
+
)])],
|
| 663 |
+
direction= 'left',
|
| 664 |
+
pad=dict(r= 10, t=85),
|
| 665 |
+
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
| 666 |
+
]
|
| 667 |
+
|
| 668 |
+
sliders = [{'yanchor': 'top',
|
| 669 |
+
'xanchor': 'left',
|
| 670 |
+
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
| 671 |
+
'transition': {'duration': 500.0, 'easing': 'linear'},
|
| 672 |
+
'pad': {'b': 10, 't': 50},
|
| 673 |
+
'len': 0.9, 'x': 0.1, 'y': 0,
|
| 674 |
+
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
| 675 |
+
'transition': {'duration': 0, 'easing': 'linear'}}],
|
| 676 |
+
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
| 677 |
+
]}]
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
fig.update(frames=frames)
|
| 681 |
+
|
| 682 |
+
for i,fr in enumerate(fig["frames"]):
|
| 683 |
+
fr.update(
|
| 684 |
+
layout={
|
| 685 |
+
"xaxis": {
|
| 686 |
+
"range": [0,imgs[0].shape[1]+i/100000]
|
| 687 |
+
},
|
| 688 |
+
"yaxis": {
|
| 689 |
+
"range": [imgs[0].shape[0]+i/100000,0]
|
| 690 |
+
},
|
| 691 |
+
})
|
| 692 |
+
|
| 693 |
+
fr.update(layout_title_text= months[i])
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
fig.update(layout_title_text= months[0])
|
| 697 |
+
fig.update(
|
| 698 |
+
layout={
|
| 699 |
+
"xaxis": {
|
| 700 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
| 701 |
+
'showgrid': False, # thin lines in the background
|
| 702 |
+
'zeroline': False, # thick line at x=0
|
| 703 |
+
'visible': False, # numbers below
|
| 704 |
+
},
|
| 705 |
+
|
| 706 |
+
"yaxis": {
|
| 707 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
| 708 |
+
'showgrid': False, # thin lines in the background
|
| 709 |
+
'zeroline': False, # thick line at y=0
|
| 710 |
+
'visible': False,},
|
| 711 |
+
|
| 712 |
+
"xaxis2": {
|
| 713 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
| 714 |
+
'showgrid': False, # thin lines in the background
|
| 715 |
+
'zeroline': False, # thick line at x=0
|
| 716 |
+
'visible': False, # numbers below
|
| 717 |
+
},
|
| 718 |
+
|
| 719 |
+
"yaxis2": {
|
| 720 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
| 721 |
+
'showgrid': False, # thin lines in the background
|
| 722 |
+
'zeroline': False, # thick line at y=0
|
| 723 |
+
'visible': False,},
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
"xaxis3": {
|
| 727 |
+
"range": [0,len(scores)+1],
|
| 728 |
+
'autorange': False, # thin lines in the background
|
| 729 |
+
'showgrid': False, # thin lines in the background
|
| 730 |
+
'zeroline': False, # thick line at y=0
|
| 731 |
+
'visible': False
|
| 732 |
+
},
|
| 733 |
+
|
| 734 |
+
"yaxis3": {
|
| 735 |
+
"range": [0,1.5],
|
| 736 |
+
'autorange': False,
|
| 737 |
+
'showgrid': False, # thin lines in the background
|
| 738 |
+
'zeroline': False, # thick line at y=0
|
| 739 |
+
'visible': False # thin lines in the background
|
| 740 |
+
}
|
| 741 |
+
}
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
fig.update_layout(updatemenus=updatemenus,
|
| 746 |
+
sliders=sliders,
|
| 747 |
+
legend=dict(
|
| 748 |
+
yanchor= 'top',
|
| 749 |
+
xanchor= 'left',
|
| 750 |
+
orientation="h")
|
| 751 |
+
)
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
fig.update_layout(margin=dict(b=0, r=0))
|
| 755 |
+
|
| 756 |
+
# fig.show() #in jupyter notebook
|
| 757 |
+
|
| 758 |
+
return fig
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
# Last function (global one)
|
| 763 |
+
# how = 'month' or '2months' or 'year'
|
| 764 |
+
|
| 765 |
+
def segment_region(latitude, longitude, start_date, end_date, how = 'month'):
|
| 766 |
+
location = [float(latitude),float(longitude)]
|
| 767 |
+
how = how[0]
|
| 768 |
+
#extract the outputs for each image
|
| 769 |
+
outputs = segment_group(location, start_date, end_date, how = how)
|
| 770 |
+
|
| 771 |
+
#extract the intersting values from image
|
| 772 |
+
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
| 773 |
+
|
| 774 |
+
|
| 775 |
+
#Create the figure
|
| 776 |
+
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
| 777 |
+
|
| 778 |
return fig
|