Merge branch 'dev' into feat/logs_on_huggingface
Browse files
app.py
CHANGED
|
@@ -80,7 +80,7 @@ llm = get_llm(provider="openai", max_tokens=1024, temperature=0.0)
|
|
| 80 |
if os.environ["GRADIO_ENV"] == "local":
|
| 81 |
reranker = get_reranker("nano")
|
| 82 |
else:
|
| 83 |
-
reranker = get_reranker("
|
| 84 |
|
| 85 |
agent = make_graph_agent(
|
| 86 |
llm=llm,
|
|
|
|
| 80 |
if os.environ["GRADIO_ENV"] == "local":
|
| 81 |
reranker = get_reranker("nano")
|
| 82 |
else:
|
| 83 |
+
reranker = get_reranker("nano")
|
| 84 |
|
| 85 |
agent = make_graph_agent(
|
| 86 |
llm=llm,
|
climateqa/engine/talk_to_data/main.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from climateqa.engine.talk_to_data.
|
| 2 |
from climateqa.engine.llm import get_llm
|
| 3 |
from climateqa.logging import log_drias_interaction_to_huggingface
|
| 4 |
import ast
|
|
|
|
| 1 |
+
from climateqa.engine.talk_to_data.talk_to_drias import drias_workflow
|
| 2 |
from climateqa.engine.llm import get_llm
|
| 3 |
from climateqa.logging import log_drias_interaction_to_huggingface
|
| 4 |
import ast
|
climateqa/engine/talk_to_data/sql_query.py
CHANGED
|
@@ -22,9 +22,10 @@ async def execute_sql_query(sql_query: str) -> pd.DataFrame:
|
|
| 22 |
"""
|
| 23 |
def _execute_query():
|
| 24 |
# Execute the query
|
| 25 |
-
|
|
|
|
| 26 |
# return fetched data
|
| 27 |
-
return results
|
| 28 |
|
| 29 |
# Run the query in a thread pool to avoid blocking
|
| 30 |
loop = asyncio.get_event_loop()
|
|
|
|
| 22 |
"""
|
| 23 |
def _execute_query():
|
| 24 |
# Execute the query
|
| 25 |
+
con = duckdb.connect()
|
| 26 |
+
results = con.sql(sql_query).fetchdf()
|
| 27 |
# return fetched data
|
| 28 |
+
return results
|
| 29 |
|
| 30 |
# Run the query in a thread pool to avoid blocking
|
| 31 |
loop = asyncio.get_event_loop()
|
climateqa/engine/talk_to_data/{workflow.py → talk_to_drias.py}
RENAMED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
from typing import Any, Callable, TypedDict, Optional
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
-
|
| 6 |
from plotly.graph_objects import Figure
|
| 7 |
from climateqa.engine.llm import get_llm
|
|
|
|
| 8 |
from climateqa.engine.talk_to_data.config import INDICATOR_COLUMNS_PER_TABLE
|
| 9 |
from climateqa.engine.talk_to_data.plot import PLOTS, Plot
|
| 10 |
from climateqa.engine.talk_to_data.sql_query import execute_sql_query
|
|
@@ -17,6 +19,7 @@ from climateqa.engine.talk_to_data.utils import (
|
|
| 17 |
detect_relevant_tables,
|
| 18 |
)
|
| 19 |
|
|
|
|
| 20 |
ROOT_PATH = os.path.dirname(os.path.dirname(os.getcwd()))
|
| 21 |
|
| 22 |
class TableState(TypedDict):
|
|
@@ -61,101 +64,6 @@ class State(TypedDict):
|
|
| 61 |
plot_states: dict[str, PlotState]
|
| 62 |
error: Optional[str]
|
| 63 |
|
| 64 |
-
async def drias_workflow(user_input: str) -> State:
|
| 65 |
-
"""Performs the complete workflow of Talk To Drias : from user input to sql queries, dataframes and figures generated
|
| 66 |
-
|
| 67 |
-
Args:
|
| 68 |
-
user_input (str): initial user input
|
| 69 |
-
|
| 70 |
-
Returns:
|
| 71 |
-
State: Final state with all the results
|
| 72 |
-
"""
|
| 73 |
-
state: State = {
|
| 74 |
-
'user_input': user_input,
|
| 75 |
-
'plots': [],
|
| 76 |
-
'plot_states': {}
|
| 77 |
-
}
|
| 78 |
-
|
| 79 |
-
llm = get_llm(provider="openai")
|
| 80 |
-
|
| 81 |
-
plots = await find_relevant_plots(state, llm)
|
| 82 |
-
state['plots'] = plots
|
| 83 |
-
|
| 84 |
-
if not state['plots']:
|
| 85 |
-
state['error'] = 'There is no plot to answer to the question'
|
| 86 |
-
return state
|
| 87 |
-
|
| 88 |
-
have_relevant_table = False
|
| 89 |
-
have_sql_query = False
|
| 90 |
-
have_dataframe = False
|
| 91 |
-
for plot_name in state['plots']:
|
| 92 |
-
|
| 93 |
-
plot = next((p for p in PLOTS if p['name'] == plot_name), None) # Find the associated plot object
|
| 94 |
-
if plot is None:
|
| 95 |
-
continue
|
| 96 |
-
|
| 97 |
-
plot_state: PlotState = {
|
| 98 |
-
'plot_name': plot_name,
|
| 99 |
-
'tables': [],
|
| 100 |
-
'table_states': {}
|
| 101 |
-
}
|
| 102 |
-
|
| 103 |
-
plot_state['plot_name'] = plot_name
|
| 104 |
-
|
| 105 |
-
relevant_tables = await find_relevant_tables_per_plot(state, plot, llm)
|
| 106 |
-
if len(relevant_tables) > 0 :
|
| 107 |
-
have_relevant_table = True
|
| 108 |
-
|
| 109 |
-
plot_state['tables'] = relevant_tables
|
| 110 |
-
|
| 111 |
-
params = {}
|
| 112 |
-
for param_name in plot['params']:
|
| 113 |
-
param = await find_param(state, param_name, relevant_tables[0])
|
| 114 |
-
if param:
|
| 115 |
-
params.update(param)
|
| 116 |
-
|
| 117 |
-
for n, table in enumerate(plot_state['tables']):
|
| 118 |
-
if n > 2:
|
| 119 |
-
break
|
| 120 |
-
|
| 121 |
-
table_state: TableState = {
|
| 122 |
-
'table_name': table,
|
| 123 |
-
'params': params,
|
| 124 |
-
'status': 'OK'
|
| 125 |
-
}
|
| 126 |
-
|
| 127 |
-
table_state["params"]['indicator_column'] = find_indicator_column(table)
|
| 128 |
-
|
| 129 |
-
sql_query = plot['sql_query'](table, table_state['params'])
|
| 130 |
-
|
| 131 |
-
if sql_query == "":
|
| 132 |
-
table_state['status'] = 'ERROR'
|
| 133 |
-
continue
|
| 134 |
-
else :
|
| 135 |
-
have_sql_query = True
|
| 136 |
-
|
| 137 |
-
table_state['sql_query'] = sql_query
|
| 138 |
-
df = await execute_sql_query(sql_query)
|
| 139 |
-
|
| 140 |
-
if len(df) > 0:
|
| 141 |
-
have_dataframe = True
|
| 142 |
-
|
| 143 |
-
figure = plot['plot_function'](table_state['params'])
|
| 144 |
-
table_state['dataframe'] = df
|
| 145 |
-
table_state['figure'] = figure
|
| 146 |
-
plot_state['table_states'][table] = table_state
|
| 147 |
-
|
| 148 |
-
state['plot_states'][plot_name] = plot_state
|
| 149 |
-
|
| 150 |
-
if not have_relevant_table:
|
| 151 |
-
state['error'] = "There is no relevant table in the our database to answer your question"
|
| 152 |
-
elif not have_sql_query:
|
| 153 |
-
state['error'] = "There is no relevant sql query on our database that can help to answer your question"
|
| 154 |
-
elif not have_dataframe:
|
| 155 |
-
state['error'] = "There is no data in our table that can answer to your question"
|
| 156 |
-
|
| 157 |
-
return state
|
| 158 |
-
|
| 159 |
async def find_relevant_plots(state: State, llm) -> list[str]:
|
| 160 |
print("---- Find relevant plots ----")
|
| 161 |
relevant_plots = await detect_relevant_plots(state['user_input'], llm)
|
|
@@ -238,6 +146,128 @@ def find_indicator_column(table: str) -> str:
|
|
| 238 |
return INDICATOR_COLUMNS_PER_TABLE[table]
|
| 239 |
|
| 240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
# def make_write_query_node():
|
| 242 |
|
| 243 |
# def write_query(state):
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
from typing import Any, Callable, TypedDict, Optional
|
| 4 |
+
from numpy import sort
|
| 5 |
import pandas as pd
|
| 6 |
+
import asyncio
|
| 7 |
from plotly.graph_objects import Figure
|
| 8 |
from climateqa.engine.llm import get_llm
|
| 9 |
+
from climateqa.engine.talk_to_data import sql_query
|
| 10 |
from climateqa.engine.talk_to_data.config import INDICATOR_COLUMNS_PER_TABLE
|
| 11 |
from climateqa.engine.talk_to_data.plot import PLOTS, Plot
|
| 12 |
from climateqa.engine.talk_to_data.sql_query import execute_sql_query
|
|
|
|
| 19 |
detect_relevant_tables,
|
| 20 |
)
|
| 21 |
|
| 22 |
+
|
| 23 |
ROOT_PATH = os.path.dirname(os.path.dirname(os.getcwd()))
|
| 24 |
|
| 25 |
class TableState(TypedDict):
|
|
|
|
| 64 |
plot_states: dict[str, PlotState]
|
| 65 |
error: Optional[str]
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
async def find_relevant_plots(state: State, llm) -> list[str]:
|
| 68 |
print("---- Find relevant plots ----")
|
| 69 |
relevant_plots = await detect_relevant_plots(state['user_input'], llm)
|
|
|
|
| 146 |
return INDICATOR_COLUMNS_PER_TABLE[table]
|
| 147 |
|
| 148 |
|
| 149 |
+
async def process_table(
|
| 150 |
+
table: str,
|
| 151 |
+
params: dict[str, Any],
|
| 152 |
+
plot: Plot,
|
| 153 |
+
) -> TableState:
|
| 154 |
+
"""Processes a table to extract relevant data and generate visualizations.
|
| 155 |
+
|
| 156 |
+
This function retrieves the SQL query for the specified table, executes it,
|
| 157 |
+
and generates a visualization based on the results.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
table (str): The name of the table to process
|
| 161 |
+
params (dict[str, Any]): Parameters used for querying the table
|
| 162 |
+
plot (Plot): The plot object containing SQL query and visualization function
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
TableState: The state of the processed table
|
| 166 |
+
"""
|
| 167 |
+
table_state: TableState = {
|
| 168 |
+
'table_name': table,
|
| 169 |
+
'params': params.copy(),
|
| 170 |
+
'status': 'OK',
|
| 171 |
+
'dataframe': None,
|
| 172 |
+
'sql_query': None,
|
| 173 |
+
'figure': None
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
table_state['params']['indicator_column'] = find_indicator_column(table)
|
| 177 |
+
sql_query = plot['sql_query'](table, table_state['params'])
|
| 178 |
+
|
| 179 |
+
if sql_query == "":
|
| 180 |
+
table_state['status'] = 'ERROR'
|
| 181 |
+
return table_state
|
| 182 |
+
table_state['sql_query'] = sql_query
|
| 183 |
+
df = await execute_sql_query(sql_query)
|
| 184 |
+
|
| 185 |
+
table_state['dataframe'] = df
|
| 186 |
+
table_state['figure'] = plot['plot_function'](table_state['params'])
|
| 187 |
+
|
| 188 |
+
return table_state
|
| 189 |
+
|
| 190 |
+
async def drias_workflow(user_input: str) -> State:
|
| 191 |
+
"""Performs the complete workflow of Talk To Drias : from user input to sql queries, dataframes and figures generated
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
user_input (str): initial user input
|
| 195 |
+
|
| 196 |
+
Returns:
|
| 197 |
+
State: Final state with all the results
|
| 198 |
+
"""
|
| 199 |
+
state: State = {
|
| 200 |
+
'user_input': user_input,
|
| 201 |
+
'plots': [],
|
| 202 |
+
'plot_states': {},
|
| 203 |
+
'error': ''
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
llm = get_llm(provider="openai")
|
| 207 |
+
|
| 208 |
+
plots = await find_relevant_plots(state, llm)
|
| 209 |
+
|
| 210 |
+
state['plots'] = plots
|
| 211 |
+
|
| 212 |
+
if len(state['plots']) < 1:
|
| 213 |
+
state['error'] = 'There is no plot to answer to the question'
|
| 214 |
+
return state
|
| 215 |
+
|
| 216 |
+
have_relevant_table = False
|
| 217 |
+
have_sql_query = False
|
| 218 |
+
have_dataframe = False
|
| 219 |
+
|
| 220 |
+
for plot_name in state['plots']:
|
| 221 |
+
|
| 222 |
+
plot = next((p for p in PLOTS if p['name'] == plot_name), None) # Find the associated plot object
|
| 223 |
+
if plot is None:
|
| 224 |
+
continue
|
| 225 |
+
|
| 226 |
+
plot_state: PlotState = {
|
| 227 |
+
'plot_name': plot_name,
|
| 228 |
+
'tables': [],
|
| 229 |
+
'table_states': {}
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
plot_state['plot_name'] = plot_name
|
| 233 |
+
|
| 234 |
+
relevant_tables = await find_relevant_tables_per_plot(state, plot, llm)
|
| 235 |
+
|
| 236 |
+
if len(relevant_tables) > 0 :
|
| 237 |
+
have_relevant_table = True
|
| 238 |
+
|
| 239 |
+
plot_state['tables'] = relevant_tables
|
| 240 |
+
|
| 241 |
+
params = {}
|
| 242 |
+
for param_name in plot['params']:
|
| 243 |
+
param = await find_param(state, param_name, relevant_tables[0])
|
| 244 |
+
if param:
|
| 245 |
+
params.update(param)
|
| 246 |
+
|
| 247 |
+
tasks = [process_table(table, params, plot) for table in plot_state['tables'][:3]]
|
| 248 |
+
results = await asyncio.gather(*tasks)
|
| 249 |
+
|
| 250 |
+
# Store results back in plot_state
|
| 251 |
+
have_dataframe = False
|
| 252 |
+
have_sql_query = False
|
| 253 |
+
for table_state in results:
|
| 254 |
+
if table_state['sql_query']:
|
| 255 |
+
have_sql_query = True
|
| 256 |
+
if table_state['dataframe'] is not None and len(table_state['dataframe']) > 0:
|
| 257 |
+
have_dataframe = True
|
| 258 |
+
plot_state['table_states'][table_state['table_name']] = table_state
|
| 259 |
+
|
| 260 |
+
state['plot_states'][plot_name] = plot_state
|
| 261 |
+
|
| 262 |
+
if not have_relevant_table:
|
| 263 |
+
state['error'] = "There is no relevant table in our database to answer your question"
|
| 264 |
+
elif not have_sql_query:
|
| 265 |
+
state['error'] = "There is no relevant sql query on our database that can help to answer your question"
|
| 266 |
+
elif not have_dataframe:
|
| 267 |
+
state['error'] = "There is no data in our table that can answer to your question"
|
| 268 |
+
|
| 269 |
+
return state
|
| 270 |
+
|
| 271 |
# def make_write_query_node():
|
| 272 |
|
| 273 |
# def write_query(state):
|