Add follow up questions
Browse files- app.py +9 -2
- climateqa/chat.py +8 -2
- climateqa/engine/chains/follow_up.py +32 -0
- climateqa/engine/graph.py +34 -6
- front/tabs/chat_interface.py +5 -2
- front/tabs/main_tab.py +6 -2
- style.css +31 -1
app.py
CHANGED
|
@@ -176,6 +176,8 @@ def event_handling(
|
|
| 176 |
tab_graphs = main_tab_components.tab_graphs
|
| 177 |
tab_papers = main_tab_components.tab_papers
|
| 178 |
graphs_container = main_tab_components.graph_container
|
|
|
|
|
|
|
| 179 |
|
| 180 |
dropdown_sources = config_components.dropdown_sources
|
| 181 |
dropdown_reports = config_components.dropdown_reports
|
|
@@ -196,15 +198,20 @@ def event_handling(
|
|
| 196 |
# Event for textbox
|
| 197 |
(textbox
|
| 198 |
.submit(start_chat, [textbox, chatbot, search_only], [textbox, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{textbox.elem_id}")
|
| 199 |
-
.then(chat, [textbox, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name=f"chat_{textbox.elem_id}")
|
| 200 |
.then(finish_chat, None, [textbox], api_name=f"finish_chat_{textbox.elem_id}")
|
| 201 |
)
|
| 202 |
# Event for examples_hidden
|
| 203 |
(examples_hidden
|
| 204 |
.change(start_chat, [examples_hidden, chatbot, search_only], [examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
|
| 205 |
-
.then(chat, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
|
| 206 |
.then(finish_chat, None, [textbox], api_name=f"finish_chat_{examples_hidden.elem_id}")
|
| 207 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
elif tab_name == "Beta - POC Adapt'Action":
|
| 210 |
print("chat poc - message sent")
|
|
|
|
| 176 |
tab_graphs = main_tab_components.tab_graphs
|
| 177 |
tab_papers = main_tab_components.tab_papers
|
| 178 |
graphs_container = main_tab_components.graph_container
|
| 179 |
+
follow_up_examples = main_tab_components.follow_up_examples
|
| 180 |
+
follow_up_examples_hidden = main_tab_components.follow_up_examples_hidden
|
| 181 |
|
| 182 |
dropdown_sources = config_components.dropdown_sources
|
| 183 |
dropdown_reports = config_components.dropdown_reports
|
|
|
|
| 198 |
# Event for textbox
|
| 199 |
(textbox
|
| 200 |
.submit(start_chat, [textbox, chatbot, search_only], [textbox, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{textbox.elem_id}")
|
| 201 |
+
.then(chat, [textbox, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs, follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{textbox.elem_id}")
|
| 202 |
.then(finish_chat, None, [textbox], api_name=f"finish_chat_{textbox.elem_id}")
|
| 203 |
)
|
| 204 |
# Event for examples_hidden
|
| 205 |
(examples_hidden
|
| 206 |
.change(start_chat, [examples_hidden, chatbot, search_only], [examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
|
| 207 |
+
.then(chat, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs,follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
|
| 208 |
.then(finish_chat, None, [textbox], api_name=f"finish_chat_{examples_hidden.elem_id}")
|
| 209 |
)
|
| 210 |
+
(follow_up_examples_hidden
|
| 211 |
+
.change(start_chat, [examples_hidden, chatbot, search_only], [follow_up_examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
|
| 212 |
+
.then(chat, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs,follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
|
| 213 |
+
.then(finish_chat, None, [textbox], api_name=f"finish_chat_{follow_up_examples_hidden.elem_id}")
|
| 214 |
+
)
|
| 215 |
|
| 216 |
elif tab_name == "Beta - POC Adapt'Action":
|
| 217 |
print("chat poc - message sent")
|
climateqa/chat.py
CHANGED
|
@@ -131,6 +131,7 @@ async def chat_stream(
|
|
| 131 |
retrieved_contents = []
|
| 132 |
answer_message_content = ""
|
| 133 |
vanna_data = {}
|
|
|
|
| 134 |
|
| 135 |
# Define processing steps
|
| 136 |
steps_display = {
|
|
@@ -202,7 +203,12 @@ async def chat_stream(
|
|
| 202 |
sub_questions = [q["question"] + "-> relevant sources : " + str(q["sources"]) for q in event["data"]["output"]["questions_list"]]
|
| 203 |
history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
except Exception as e:
|
| 208 |
print(f"Event {event} has failed")
|
|
@@ -213,4 +219,4 @@ async def chat_stream(
|
|
| 213 |
# Call the function to log interaction
|
| 214 |
log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id)
|
| 215 |
|
| 216 |
-
yield history, docs_html, output_query, output_language, related_contents, graphs_html#, vanna_data
|
|
|
|
| 131 |
retrieved_contents = []
|
| 132 |
answer_message_content = ""
|
| 133 |
vanna_data = {}
|
| 134 |
+
follow_up_examples = gr.Dataset(samples=[])
|
| 135 |
|
| 136 |
# Define processing steps
|
| 137 |
steps_display = {
|
|
|
|
| 203 |
sub_questions = [q["question"] + "-> relevant sources : " + str(q["sources"]) for q in event["data"]["output"]["questions_list"]]
|
| 204 |
history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
|
| 205 |
|
| 206 |
+
# Handle follow up questions
|
| 207 |
+
if event["name"] == "generate_follow_up" and event["event"] == "on_chain_end":
|
| 208 |
+
follow_up_examples = event["data"]["output"].get("follow_up_questions", [])
|
| 209 |
+
follow_up_examples = gr.Dataset(samples= [ [question] for question in follow_up_examples ])
|
| 210 |
+
|
| 211 |
+
yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
|
| 212 |
|
| 213 |
except Exception as e:
|
| 214 |
print(f"Event {event} has failed")
|
|
|
|
| 219 |
# Call the function to log interaction
|
| 220 |
log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id)
|
| 221 |
|
| 222 |
+
yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
|
climateqa/engine/chains/follow_up.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
from langchain.prompts import ChatPromptTemplate
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
FOLLOW_UP_TEMPLATE = """Based on the previous question and answer, generate 2-3 relevant follow-up questions that would help explore the topic further.
|
| 6 |
+
|
| 7 |
+
Previous Question: {user_input}
|
| 8 |
+
Previous Answer: {answer}
|
| 9 |
+
|
| 10 |
+
Generate short, concise, focused follow-up questions
|
| 11 |
+
You don't need a full question as it will be reformulated later as a standalone question with the context. Eg. "Details the first point"
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def make_follow_up_node(llm):
|
| 15 |
+
prompt = ChatPromptTemplate.from_template(FOLLOW_UP_TEMPLATE)
|
| 16 |
+
|
| 17 |
+
def generate_follow_up(state):
|
| 18 |
+
if not state.get("answer"):
|
| 19 |
+
return state
|
| 20 |
+
|
| 21 |
+
response = llm.invoke(prompt.format(
|
| 22 |
+
user_input=state["user_input"],
|
| 23 |
+
answer=state["answer"]
|
| 24 |
+
))
|
| 25 |
+
|
| 26 |
+
# Extract questions from response
|
| 27 |
+
follow_ups = [q.strip() for q in response.content.split("\n") if q.strip()]
|
| 28 |
+
state["follow_up_questions"] = follow_ups
|
| 29 |
+
|
| 30 |
+
return state
|
| 31 |
+
|
| 32 |
+
return generate_follow_up
|
climateqa/engine/graph.py
CHANGED
|
@@ -24,6 +24,7 @@ from .chains.answer_rag import make_rag_node
|
|
| 24 |
from .chains.graph_retriever import make_graph_retriever_node
|
| 25 |
from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
|
| 26 |
from .chains.standalone_question import make_standalone_question_node
|
|
|
|
| 27 |
|
| 28 |
class GraphState(TypedDict):
|
| 29 |
"""
|
|
@@ -50,6 +51,7 @@ class GraphState(TypedDict):
|
|
| 50 |
recommended_content : List[Document] # OWID Graphs # TODO merge with related_contents
|
| 51 |
search_only : bool = False
|
| 52 |
reports : List[str] = []
|
|
|
|
| 53 |
|
| 54 |
def dummy(state):
|
| 55 |
return
|
|
@@ -121,6 +123,11 @@ def route_retrieve_documents(state):
|
|
| 121 |
return END
|
| 122 |
return sources_to_retrieve
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def make_id_dict(values):
|
| 125 |
return {k:k for k in values}
|
| 126 |
|
|
@@ -141,6 +148,7 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi
|
|
| 141 |
answer_rag = make_rag_node(llm, with_docs=True)
|
| 142 |
answer_rag_no_docs = make_rag_node(llm, with_docs=False)
|
| 143 |
chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
|
|
|
|
| 144 |
|
| 145 |
# Define the nodes
|
| 146 |
# workflow.add_node("set_defaults", set_defaults)
|
|
@@ -158,6 +166,8 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi
|
|
| 158 |
workflow.add_node("retrieve_documents", retrieve_documents)
|
| 159 |
workflow.add_node("answer_rag", answer_rag)
|
| 160 |
workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
|
|
|
|
|
|
|
| 161 |
|
| 162 |
# Entry point
|
| 163 |
workflow.set_entry_point("standalone_question")
|
|
@@ -192,6 +202,12 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi
|
|
| 192 |
make_id_dict(["retrieve_graphs", END])
|
| 193 |
)
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
# Define the edges
|
| 196 |
workflow.add_edge("standalone_question", "categorize_intent")
|
| 197 |
workflow.add_edge("translate_query", "transform_query")
|
|
@@ -200,13 +216,17 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi
|
|
| 200 |
# workflow.add_edge("transform_query", END) # TODO remove
|
| 201 |
|
| 202 |
workflow.add_edge("retrieve_graphs", END)
|
| 203 |
-
workflow.add_edge("answer_rag",
|
| 204 |
-
workflow.add_edge("answer_rag_no_docs",
|
|
|
|
|
|
|
| 205 |
workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
|
| 206 |
workflow.add_edge("retrieve_graphs_chitchat", END)
|
| 207 |
|
| 208 |
# workflow.add_edge("retrieve_local_data", "answer_search")
|
| 209 |
workflow.add_edge("retrieve_documents", "answer_search")
|
|
|
|
|
|
|
| 210 |
|
| 211 |
# Compile
|
| 212 |
app = workflow.compile()
|
|
@@ -246,6 +266,7 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
|
|
| 246 |
answer_rag = make_rag_node(llm, with_docs=True)
|
| 247 |
answer_rag_no_docs = make_rag_node(llm, with_docs=False)
|
| 248 |
chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
|
|
|
|
| 249 |
|
| 250 |
# Define the nodes
|
| 251 |
# workflow.add_node("set_defaults", set_defaults)
|
|
@@ -265,6 +286,8 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
|
|
| 265 |
workflow.add_node("retrieve_documents", retrieve_documents)
|
| 266 |
workflow.add_node("answer_rag", answer_rag)
|
| 267 |
workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
|
|
|
|
|
|
|
| 268 |
|
| 269 |
# Entry point
|
| 270 |
workflow.set_entry_point("standalone_question")
|
|
@@ -299,6 +322,12 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
|
|
| 299 |
make_id_dict(["retrieve_graphs", END])
|
| 300 |
)
|
| 301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
# Define the edges
|
| 303 |
workflow.add_edge("standalone_question", "categorize_intent")
|
| 304 |
workflow.add_edge("translate_query", "transform_query")
|
|
@@ -307,6 +336,8 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
|
|
| 307 |
# workflow.add_edge("transform_query", END) # TODO remove
|
| 308 |
|
| 309 |
workflow.add_edge("retrieve_graphs", END)
|
|
|
|
|
|
|
| 310 |
workflow.add_edge("answer_rag", END)
|
| 311 |
workflow.add_edge("answer_rag_no_docs", END)
|
| 312 |
workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
|
|
@@ -314,10 +345,7 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_
|
|
| 314 |
|
| 315 |
workflow.add_edge("retrieve_local_data", "answer_search")
|
| 316 |
workflow.add_edge("retrieve_documents", "answer_search")
|
| 317 |
-
|
| 318 |
-
# workflow.add_edge("transform_query", "retrieve_drias_data")
|
| 319 |
-
# workflow.add_edge("retrieve_drias_data", END)
|
| 320 |
-
|
| 321 |
|
| 322 |
# Compile
|
| 323 |
app = workflow.compile()
|
|
|
|
| 24 |
from .chains.graph_retriever import make_graph_retriever_node
|
| 25 |
from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
|
| 26 |
from .chains.standalone_question import make_standalone_question_node
|
| 27 |
+
from .chains.follow_up import make_follow_up_node # Add this import
|
| 28 |
|
| 29 |
class GraphState(TypedDict):
|
| 30 |
"""
|
|
|
|
| 51 |
recommended_content : List[Document] # OWID Graphs # TODO merge with related_contents
|
| 52 |
search_only : bool = False
|
| 53 |
reports : List[str] = []
|
| 54 |
+
follow_up_questions: List[str] = []
|
| 55 |
|
| 56 |
def dummy(state):
|
| 57 |
return
|
|
|
|
| 123 |
return END
|
| 124 |
return sources_to_retrieve
|
| 125 |
|
| 126 |
+
def route_follow_up(state):
|
| 127 |
+
if state["follow_up_questions"]:
|
| 128 |
+
return "process_follow_up"
|
| 129 |
+
return END
|
| 130 |
+
|
| 131 |
def make_id_dict(values):
|
| 132 |
return {k:k for k in values}
|
| 133 |
|
|
|
|
| 148 |
answer_rag = make_rag_node(llm, with_docs=True)
|
| 149 |
answer_rag_no_docs = make_rag_node(llm, with_docs=False)
|
| 150 |
chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
|
| 151 |
+
generate_follow_up = make_follow_up_node(llm)
|
| 152 |
|
| 153 |
# Define the nodes
|
| 154 |
# workflow.add_node("set_defaults", set_defaults)
|
|
|
|
| 166 |
workflow.add_node("retrieve_documents", retrieve_documents)
|
| 167 |
workflow.add_node("answer_rag", answer_rag)
|
| 168 |
workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
|
| 169 |
+
workflow.add_node("generate_follow_up", generate_follow_up)
|
| 170 |
+
# workflow.add_node("process_follow_up", standalone_question_node)
|
| 171 |
|
| 172 |
# Entry point
|
| 173 |
workflow.set_entry_point("standalone_question")
|
|
|
|
| 202 |
make_id_dict(["retrieve_graphs", END])
|
| 203 |
)
|
| 204 |
|
| 205 |
+
# workflow.add_conditional_edges(
|
| 206 |
+
# "generate_follow_up",
|
| 207 |
+
# route_follow_up,
|
| 208 |
+
# make_id_dict(["process_follow_up", END])
|
| 209 |
+
# )
|
| 210 |
+
|
| 211 |
# Define the edges
|
| 212 |
workflow.add_edge("standalone_question", "categorize_intent")
|
| 213 |
workflow.add_edge("translate_query", "transform_query")
|
|
|
|
| 216 |
# workflow.add_edge("transform_query", END) # TODO remove
|
| 217 |
|
| 218 |
workflow.add_edge("retrieve_graphs", END)
|
| 219 |
+
workflow.add_edge("answer_rag", "generate_follow_up")
|
| 220 |
+
workflow.add_edge("answer_rag_no_docs", "generate_follow_up")
|
| 221 |
+
# workflow.add_edge("answer_rag", END)
|
| 222 |
+
# workflow.add_edge("answer_rag_no_docs", END)
|
| 223 |
workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
|
| 224 |
workflow.add_edge("retrieve_graphs_chitchat", END)
|
| 225 |
|
| 226 |
# workflow.add_edge("retrieve_local_data", "answer_search")
|
| 227 |
workflow.add_edge("retrieve_documents", "answer_search")
|
| 228 |
+
workflow.add_edge("generate_follow_up",END)
|
| 229 |
+
# workflow.add_edge("process_follow_up", "categorize_intent")
|
| 230 |
|
| 231 |
# Compile
|
| 232 |
app = workflow.compile()
|
|
|
|
| 266 |
answer_rag = make_rag_node(llm, with_docs=True)
|
| 267 |
answer_rag_no_docs = make_rag_node(llm, with_docs=False)
|
| 268 |
chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
|
| 269 |
+
generate_follow_up = make_follow_up_node(llm)
|
| 270 |
|
| 271 |
# Define the nodes
|
| 272 |
# workflow.add_node("set_defaults", set_defaults)
|
|
|
|
| 286 |
workflow.add_node("retrieve_documents", retrieve_documents)
|
| 287 |
workflow.add_node("answer_rag", answer_rag)
|
| 288 |
workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
|
| 289 |
+
workflow.add_node("generate_follow_up", generate_follow_up)
|
| 290 |
+
workflow.add_node("process_follow_up", standalone_question_node)
|
| 291 |
|
| 292 |
# Entry point
|
| 293 |
workflow.set_entry_point("standalone_question")
|
|
|
|
| 322 |
make_id_dict(["retrieve_graphs", END])
|
| 323 |
)
|
| 324 |
|
| 325 |
+
workflow.add_conditional_edges(
|
| 326 |
+
"generate_follow_up",
|
| 327 |
+
route_follow_up,
|
| 328 |
+
make_id_dict(["process_follow_up", END])
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
# Define the edges
|
| 332 |
workflow.add_edge("standalone_question", "categorize_intent")
|
| 333 |
workflow.add_edge("translate_query", "transform_query")
|
|
|
|
| 336 |
# workflow.add_edge("transform_query", END) # TODO remove
|
| 337 |
|
| 338 |
workflow.add_edge("retrieve_graphs", END)
|
| 339 |
+
workflow.add_edge("answer_rag", "generate_follow_up")
|
| 340 |
+
workflow.add_edge("answer_rag_no_docs", "generate_follow_up")
|
| 341 |
workflow.add_edge("answer_rag", END)
|
| 342 |
workflow.add_edge("answer_rag_no_docs", END)
|
| 343 |
workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
|
|
|
|
| 345 |
|
| 346 |
workflow.add_edge("retrieve_local_data", "answer_search")
|
| 347 |
workflow.add_edge("retrieve_documents", "answer_search")
|
| 348 |
+
workflow.add_edge("process_follow_up", "categorize_intent")
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
# Compile
|
| 351 |
app = workflow.compile()
|
front/tabs/chat_interface.py
CHANGED
|
@@ -54,7 +54,10 @@ def create_chat_interface(tab):
|
|
| 54 |
max_height="80vh",
|
| 55 |
height="100vh"
|
| 56 |
)
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
with gr.Row(elem_id="input-message"):
|
| 59 |
|
| 60 |
textbox = gr.Textbox(
|
|
@@ -68,7 +71,7 @@ def create_chat_interface(tab):
|
|
| 68 |
|
| 69 |
config_button = gr.Button("", elem_id="config-button")
|
| 70 |
|
| 71 |
-
return chatbot, textbox, config_button
|
| 72 |
|
| 73 |
|
| 74 |
|
|
|
|
| 54 |
max_height="80vh",
|
| 55 |
height="100vh"
|
| 56 |
)
|
| 57 |
+
with gr.Row(elem_id="follow-up-examples"):
|
| 58 |
+
follow_up_examples_hidden = gr.Textbox(visible=False, elem_id="follow-up-hidden")
|
| 59 |
+
follow_up_examples = gr.Examples(examples=["sample_1","sample_2"], label="Follow up questions", inputs= [follow_up_examples_hidden], elem_id="follow-up-button", run_on_click=False)
|
| 60 |
+
|
| 61 |
with gr.Row(elem_id="input-message"):
|
| 62 |
|
| 63 |
textbox = gr.Textbox(
|
|
|
|
| 71 |
|
| 72 |
config_button = gr.Button("", elem_id="config-button")
|
| 73 |
|
| 74 |
+
return chatbot, textbox, config_button, follow_up_examples, follow_up_examples_hidden
|
| 75 |
|
| 76 |
|
| 77 |
|
front/tabs/main_tab.py
CHANGED
|
@@ -29,6 +29,8 @@ class MainTabPanel:
|
|
| 29 |
tab_graphs: gr.Tab
|
| 30 |
tab_papers: gr.Tab
|
| 31 |
graph_container: gr.HTML
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def cqa_tab(tab_name):
|
| 34 |
# State variables
|
|
@@ -37,7 +39,7 @@ def cqa_tab(tab_name):
|
|
| 37 |
with gr.Row(elem_id="chatbot-row"):
|
| 38 |
# Left column - Chat interface
|
| 39 |
with gr.Column(scale=2):
|
| 40 |
-
chatbot, textbox, config_button = create_chat_interface(tab_name)
|
| 41 |
|
| 42 |
# Right column - Content panels
|
| 43 |
with gr.Column(scale=2, variant="panel", elem_id="right-panel"):
|
|
@@ -91,5 +93,7 @@ def cqa_tab(tab_name):
|
|
| 91 |
tab_figures=tab_figures,
|
| 92 |
tab_graphs=tab_graphs,
|
| 93 |
tab_papers=tab_papers,
|
| 94 |
-
graph_container=graphs_container
|
|
|
|
|
|
|
| 95 |
)
|
|
|
|
| 29 |
tab_graphs: gr.Tab
|
| 30 |
tab_papers: gr.Tab
|
| 31 |
graph_container: gr.HTML
|
| 32 |
+
follow_up_examples : gr.Examples
|
| 33 |
+
follow_up_examples_hidden : gr.Textbox
|
| 34 |
|
| 35 |
def cqa_tab(tab_name):
|
| 36 |
# State variables
|
|
|
|
| 39 |
with gr.Row(elem_id="chatbot-row"):
|
| 40 |
# Left column - Chat interface
|
| 41 |
with gr.Column(scale=2):
|
| 42 |
+
chatbot, textbox, config_button, follow_up_examples, follow_up_examples_hidden = create_chat_interface(tab_name)
|
| 43 |
|
| 44 |
# Right column - Content panels
|
| 45 |
with gr.Column(scale=2, variant="panel", elem_id="right-panel"):
|
|
|
|
| 93 |
tab_figures=tab_figures,
|
| 94 |
tab_graphs=tab_graphs,
|
| 95 |
tab_papers=tab_papers,
|
| 96 |
+
graph_container=graphs_container,
|
| 97 |
+
follow_up_examples= follow_up_examples,
|
| 98 |
+
follow_up_examples_hidden = follow_up_examples_hidden
|
| 99 |
)
|
style.css
CHANGED
|
@@ -115,6 +115,11 @@ main.flex.flex-1.flex-col {
|
|
| 115 |
border-radius: 40px;
|
| 116 |
padding-left: 30px;
|
| 117 |
resize: none;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
}
|
| 119 |
|
| 120 |
#input-message > div {
|
|
@@ -474,6 +479,18 @@ a {
|
|
| 474 |
text-decoration: none !important;
|
| 475 |
}
|
| 476 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 477 |
/* Media Queries */
|
| 478 |
/* Desktop Media Query */
|
| 479 |
@media screen and (min-width: 1024px) {
|
|
@@ -496,6 +513,15 @@ a {
|
|
| 496 |
overflow-y: scroll !important;
|
| 497 |
}
|
| 498 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
div#chatbot-row {
|
| 500 |
max-height: calc(100vh - 90px) !important;
|
| 501 |
}
|
|
@@ -514,7 +540,11 @@ a {
|
|
| 514 |
/* Mobile Media Query */
|
| 515 |
@media screen and (max-width: 767px) {
|
| 516 |
div#chatbot {
|
| 517 |
-
height:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 518 |
}
|
| 519 |
|
| 520 |
#submit-button {
|
|
|
|
| 115 |
border-radius: 40px;
|
| 116 |
padding-left: 30px;
|
| 117 |
resize: none;
|
| 118 |
+
background-color: #f0f8ff; /* Light blue background */
|
| 119 |
+
border: 2px solid #4b8ec3; /* Blue border */
|
| 120 |
+
font-size: 16px; /* Increase font size */
|
| 121 |
+
color: #333; /* Text color */
|
| 122 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Add shadow */
|
| 123 |
}
|
| 124 |
|
| 125 |
#input-message > div {
|
|
|
|
| 479 |
text-decoration: none !important;
|
| 480 |
}
|
| 481 |
|
| 482 |
+
/* Follow-up Examples Styles */
|
| 483 |
+
#follow-up-examples {
|
| 484 |
+
height: 15vh;
|
| 485 |
+
overflow-y: auto;
|
| 486 |
+
padding: 10px 0;
|
| 487 |
+
}
|
| 488 |
+
|
| 489 |
+
#follow-up-button {
|
| 490 |
+
height: 100%;
|
| 491 |
+
overflow-y: auto;
|
| 492 |
+
}
|
| 493 |
+
|
| 494 |
/* Media Queries */
|
| 495 |
/* Desktop Media Query */
|
| 496 |
@media screen and (min-width: 1024px) {
|
|
|
|
| 513 |
overflow-y: scroll !important;
|
| 514 |
}
|
| 515 |
|
| 516 |
+
div#chatbot-row {
|
| 517 |
+
max-height: calc(100vh - 200px) !important;
|
| 518 |
+
}
|
| 519 |
+
|
| 520 |
+
div#chatbot {
|
| 521 |
+
height: 65vh !important;
|
| 522 |
+
max-height: 65vh !important;
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
div#chatbot-row {
|
| 526 |
max-height: calc(100vh - 90px) !important;
|
| 527 |
}
|
|
|
|
| 540 |
/* Mobile Media Query */
|
| 541 |
@media screen and (max-width: 767px) {
|
| 542 |
div#chatbot {
|
| 543 |
+
height: 400px !important; /* Reduced from 500px */
|
| 544 |
+
}
|
| 545 |
+
|
| 546 |
+
#follow-up-examples {
|
| 547 |
+
height: 100px;
|
| 548 |
}
|
| 549 |
|
| 550 |
#submit-button {
|