Commit
·
b56808c
1
Parent(s):
52eb91c
feat: created plots for talk to ipcc
Browse files
climateqa/engine/talk_to_data/ipcc/plots.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable
|
| 2 |
+
from plotly.graph_objects import Figure
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import geojson
|
| 6 |
+
|
| 7 |
+
from climateqa.engine.talk_to_data.ipcc.config import IPCC_INDICATOR_TO_UNIT, IPCC_SCENARIO
|
| 8 |
+
from climateqa.engine.talk_to_data.ipcc.queries import indicator_for_given_year_query, indicator_per_year_at_location_query
|
| 9 |
+
from climateqa.engine.talk_to_data.objects.plot import Plot
|
| 10 |
+
|
| 11 |
+
def plot_indicator_evolution_at_location_historical_and_projections(
|
| 12 |
+
params: dict,
|
| 13 |
+
) -> Callable[[pd.DataFrame], Figure]:
|
| 14 |
+
"""
|
| 15 |
+
Returns a function that generates a line plot showing the evolution of a climate indicator
|
| 16 |
+
(e.g., temperature, rainfall) over time at a specific location, including both historical data
|
| 17 |
+
and future projections for different climate scenarios.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
params (dict): Dictionary with:
|
| 21 |
+
- indicator_column (str): Name of the climate indicator column to plot.
|
| 22 |
+
- location (str): Location (e.g., country, city) for which to plot the indicator.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
Callable[[pd.DataFrame], Figure]: Function that takes a DataFrame and returns a Plotly Figure
|
| 26 |
+
showing the indicator's evolution over time, with scenario lines and historical data.
|
| 27 |
+
"""
|
| 28 |
+
indicator = params["indicator_column"]
|
| 29 |
+
location = params["location"]
|
| 30 |
+
indicator_label = " ".join(word.capitalize() for word in indicator.split("_"))
|
| 31 |
+
unit = IPCC_INDICATOR_TO_UNIT.get(indicator, "")
|
| 32 |
+
|
| 33 |
+
def plot_data(df: pd.DataFrame) -> Figure:
|
| 34 |
+
df = df.sort_values(by='year')
|
| 35 |
+
years = df['year'].astype(int).tolist()
|
| 36 |
+
indicators = df[indicator].astype(float).tolist()
|
| 37 |
+
scenarios = df['scenario'].astype(str).tolist()
|
| 38 |
+
|
| 39 |
+
# Find last historical value for continuity
|
| 40 |
+
last_historical = [(y, v) for y, v, s in zip(years, indicators, scenarios) if s == 'historical']
|
| 41 |
+
last_historical_year, last_historical_indicator = last_historical[-1] if last_historical else (None, None)
|
| 42 |
+
|
| 43 |
+
fig = go.Figure()
|
| 44 |
+
for scenario in IPCC_SCENARIO:
|
| 45 |
+
x = [y for y, s in zip(years, scenarios) if s == scenario]
|
| 46 |
+
y = [v for v, s in zip(indicators, scenarios) if s == scenario]
|
| 47 |
+
# Connect historical to scenario
|
| 48 |
+
if scenario != 'historical' and last_historical_indicator is not None:
|
| 49 |
+
x = [last_historical_year] + x
|
| 50 |
+
y = [last_historical_indicator] + y
|
| 51 |
+
fig.add_trace(go.Scatter(
|
| 52 |
+
x=x,
|
| 53 |
+
y=y,
|
| 54 |
+
mode='lines',
|
| 55 |
+
name=scenario
|
| 56 |
+
))
|
| 57 |
+
|
| 58 |
+
fig.update_layout(
|
| 59 |
+
title=f'Yearly Evolution of {indicator_label} in {location} (Historical + SSP Scenarios)',
|
| 60 |
+
xaxis_title='Year',
|
| 61 |
+
yaxis_title=f'{indicator_label} ({unit})',
|
| 62 |
+
legend_title='Scenario',
|
| 63 |
+
height=800,
|
| 64 |
+
)
|
| 65 |
+
return fig
|
| 66 |
+
|
| 67 |
+
return plot_data
|
| 68 |
+
|
| 69 |
+
indicator_evolution_at_location_historical_and_projections: Plot = {
|
| 70 |
+
"name": "Indicator Evolution at Location (Historical + Projections)",
|
| 71 |
+
"description": (
|
| 72 |
+
"Shows how a climate indicator (e.g., rainfall, temperature) changes over time at a specific location, "
|
| 73 |
+
"including historical data and future projections. "
|
| 74 |
+
"Useful for questions about the value or trend of an indicator at a location for any year, "
|
| 75 |
+
"such as 'What will be the total rainfall in China in 2050?' or 'How does rainfall evolve in China over time?'. "
|
| 76 |
+
"Parameters: indicator_column (the climate variable), location (e.g., country, city)."
|
| 77 |
+
),
|
| 78 |
+
"params": ["indicator_column", "location"],
|
| 79 |
+
"plot_function": plot_indicator_evolution_at_location_historical_and_projections,
|
| 80 |
+
"sql_query": indicator_per_year_at_location_query,
|
| 81 |
+
"short_name": "Indicator Evolution"
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
def plot_choropleth_map_of_country_indicator_for_specific_year(
|
| 85 |
+
params: dict,
|
| 86 |
+
) -> Callable[[pd.DataFrame], Figure]:
|
| 87 |
+
"""
|
| 88 |
+
Returns a function that generates a choropleth map (heatmap) showing the spatial distribution
|
| 89 |
+
of a climate indicator (e.g., temperature, rainfall) across all regions of a country for a specific year.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
params (dict): Dictionary with:
|
| 93 |
+
- indicator_column (str): Name of the climate indicator column to plot.
|
| 94 |
+
- year (str or int, optional): Year for which to plot the indicator (default: 2050).
|
| 95 |
+
- country_name (str): Name of the country.
|
| 96 |
+
- location (str): Location (country or region) for the map.
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
Callable[[pd.DataFrame], Figure]: Function that takes a DataFrame and returns a Plotly Figure
|
| 100 |
+
showing the indicator's spatial distribution as a choropleth map for the specified year.
|
| 101 |
+
"""
|
| 102 |
+
indicator = params["indicator_column"]
|
| 103 |
+
year = params.get('year', 2050)
|
| 104 |
+
country_name = params['country_name']
|
| 105 |
+
location = params['location']
|
| 106 |
+
indicator_label = " ".join(word.capitalize() for word in indicator.split("_"))
|
| 107 |
+
unit = IPCC_INDICATOR_TO_UNIT.get(indicator, "")
|
| 108 |
+
|
| 109 |
+
def plot_data(df: pd.DataFrame) -> Figure:
|
| 110 |
+
custom_colorscale = [
|
| 111 |
+
[0.0, "rgb(5, 48, 97)"],
|
| 112 |
+
[0.10, "rgb(33, 102, 172)"],
|
| 113 |
+
[0.20, "rgb(67, 147, 195)"],
|
| 114 |
+
[0.30, "rgb(146, 197, 222)"],
|
| 115 |
+
[0.40, "rgb(209, 229, 240)"],
|
| 116 |
+
[0.50, "rgb(247, 247, 247)"],
|
| 117 |
+
[0.60, "rgb(253, 219, 199)"],
|
| 118 |
+
[0.75, "rgb(244, 165, 130)"],
|
| 119 |
+
[0.85, "rgb(214, 96, 77)"],
|
| 120 |
+
[0.90, "rgb(178, 24, 43)"],
|
| 121 |
+
[1.0, "rgb(103, 0, 31)"]
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
indicators = df[indicator].astype(float).tolist()
|
| 125 |
+
latitudes = df["latitude"].astype(float).tolist()
|
| 126 |
+
longitudes = df["longitude"].astype(float).tolist()
|
| 127 |
+
|
| 128 |
+
features = [
|
| 129 |
+
geojson.Feature(
|
| 130 |
+
geometry=geojson.Polygon([[
|
| 131 |
+
[lon - 0.5, lat - 0.5],
|
| 132 |
+
[lon + 0.5, lat - 0.5],
|
| 133 |
+
[lon + 0.5, lat + 0.5],
|
| 134 |
+
[lon - 0.5, lat + 0.5],
|
| 135 |
+
[lon - 0.5, lat - 0.5]
|
| 136 |
+
]]),
|
| 137 |
+
properties={"value": val},
|
| 138 |
+
id=str(idx)
|
| 139 |
+
)
|
| 140 |
+
for idx, (lat, lon, val) in enumerate(zip(latitudes, longitudes, indicators))
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
geojson_data = geojson.FeatureCollection(features)
|
| 144 |
+
|
| 145 |
+
fig = go.Figure(go.Choroplethmapbox(
|
| 146 |
+
geojson=geojson_data,
|
| 147 |
+
locations=[str(i) for i in range(len(indicators))],
|
| 148 |
+
featureidkey="id",
|
| 149 |
+
z=indicators,
|
| 150 |
+
colorscale=custom_colorscale,
|
| 151 |
+
zmin=min(indicators),
|
| 152 |
+
zmax=max(indicators),
|
| 153 |
+
marker_opacity=0.7,
|
| 154 |
+
marker_line_width=0,
|
| 155 |
+
colorbar_title=f"{indicator_label} ({unit})",
|
| 156 |
+
text=[f"{indicator_label}: {value:.2f} {unit}" for value in indicators], # Add hover text showing the indicator value
|
| 157 |
+
hoverinfo="text"
|
| 158 |
+
))
|
| 159 |
+
|
| 160 |
+
fig.update_layout(
|
| 161 |
+
mapbox_style="open-street-map",
|
| 162 |
+
mapbox_zoom=3,
|
| 163 |
+
height=800,
|
| 164 |
+
mapbox_center={
|
| 165 |
+
"lat": latitudes[len(latitudes)//2] if latitudes else 0,
|
| 166 |
+
"lon": longitudes[len(longitudes)//2] if longitudes else 0
|
| 167 |
+
},
|
| 168 |
+
coloraxis_colorbar=dict(title=f"{indicator_label} ({unit})"),
|
| 169 |
+
title=f"{indicator_label} in {year} in {location} ({country_name})"
|
| 170 |
+
)
|
| 171 |
+
return fig
|
| 172 |
+
|
| 173 |
+
return plot_data
|
| 174 |
+
|
| 175 |
+
choropleth_map_of_country_indicator_for_specific_year: Plot = {
|
| 176 |
+
"name": "Choropleth Map of a Country's Indicator Distribution for a Specific Year",
|
| 177 |
+
"description": (
|
| 178 |
+
"Displays a map showing the spatial distribution of a climate indicator (e.g., rainfall, temperature) "
|
| 179 |
+
"across all regions of a country for a specific year. "
|
| 180 |
+
"Can answer questions about the value of an indicator in a country or region for a given year, "
|
| 181 |
+
"such as 'What will be the total rainfall in China in 2050?' or 'How is rainfall distributed across China in 2050?'. "
|
| 182 |
+
"Parameters: indicator_column (the climate variable), year, location (country name)."
|
| 183 |
+
),
|
| 184 |
+
"params": ["indicator_column", "year", "location"],
|
| 185 |
+
"plot_function": plot_choropleth_map_of_country_indicator_for_specific_year,
|
| 186 |
+
"sql_query": indicator_for_given_year_query,
|
| 187 |
+
"short_name": "Choropleth Map"
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
IPCC_PLOTS = [
|
| 191 |
+
indicator_evolution_at_location_historical_and_projections,
|
| 192 |
+
choropleth_map_of_country_indicator_for_specific_year
|
| 193 |
+
]
|