Add drias indicators
Browse files- climateqa/engine/talk_to_data/config.py +17 -0
- climateqa/engine/talk_to_data/plot.py +19 -7
- style.css +23 -0
climateqa/engine/talk_to_data/config.py
CHANGED
|
@@ -51,6 +51,23 @@ DRIAS_MODELS = [
|
|
| 51 |
'REMO2009_MPI-ESM-LR',
|
| 52 |
'CCLM4-8-17_HadGEM2-ES'
|
| 53 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
DRIAS_UI_TEXT = """
|
| 56 |
Hi, I'm **Talk to Drias**, designed to answer your questions using [**DRIAS - TRACC 2023**](https://www.drias-climat.fr/accompagnement/sections/401) data.
|
|
|
|
| 51 |
'REMO2009_MPI-ESM-LR',
|
| 52 |
'CCLM4-8-17_HadGEM2-ES'
|
| 53 |
]
|
| 54 |
+
# Mapping between indicator columns and their units
|
| 55 |
+
INDICATOR_TO_UNIT = {
|
| 56 |
+
"total_winter_precipitation": "mm",
|
| 57 |
+
"total_summer_precipitation": "mm",
|
| 58 |
+
"total_annual_precipitation": "mm",
|
| 59 |
+
"total_remarkable_daily_precipitation": "mm",
|
| 60 |
+
"frequency_of_remarkable_daily_precipitation": "days",
|
| 61 |
+
"extreme_precipitation_intensity": "mm",
|
| 62 |
+
"mean_winter_temperature": "°C",
|
| 63 |
+
"mean_summer_temperature": "°C",
|
| 64 |
+
"mean_annual_temperature": "°C",
|
| 65 |
+
"number_tropical_nights": "days",
|
| 66 |
+
"maximum_summer_temperature": "°C",
|
| 67 |
+
"number_of_days_with_tx_above_30": "days",
|
| 68 |
+
"number_of_days_with_tx_above_35": "days",
|
| 69 |
+
"number_of_days_with_dry_ground": "days"
|
| 70 |
+
}
|
| 71 |
|
| 72 |
DRIAS_UI_TEXT = """
|
| 73 |
Hi, I'm **Talk to Drias**, designed to answer your questions using [**DRIAS - TRACC 2023**](https://www.drias-climat.fr/accompagnement/sections/401) data.
|
climateqa/engine/talk_to_data/plot.py
CHANGED
|
@@ -9,6 +9,9 @@ from climateqa.engine.talk_to_data.sql_query import (
|
|
| 9 |
indicator_for_given_year_query,
|
| 10 |
indicator_per_year_at_location_query,
|
| 11 |
)
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
class Plot(TypedDict):
|
|
@@ -58,6 +61,7 @@ def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 58 |
indicator = params["indicator_column"]
|
| 59 |
location = params["location"]
|
| 60 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
|
|
|
| 61 |
|
| 62 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 63 |
"""Generates the actual plot from the data.
|
|
@@ -111,6 +115,7 @@ def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 111 |
name=f"Yearly {indicator_label}",
|
| 112 |
mode="lines",
|
| 113 |
marker=dict(color="#1f77b4"),
|
|
|
|
| 114 |
)
|
| 115 |
|
| 116 |
# Sliding average dashed line
|
|
@@ -121,11 +126,12 @@ def plot_indicator_evolution_at_location(params: dict) -> Callable[..., Figure]:
|
|
| 121 |
name="10 years rolling average",
|
| 122 |
line=dict(dash="dash"),
|
| 123 |
marker=dict(color="#d62728"),
|
|
|
|
| 124 |
)
|
| 125 |
fig.update_layout(
|
| 126 |
title=f"Plot of {indicator_label} in {location} ({model_label})",
|
| 127 |
xaxis_title="Year",
|
| 128 |
-
yaxis_title=indicator_label,
|
| 129 |
template="plotly_white",
|
| 130 |
)
|
| 131 |
return fig
|
|
@@ -161,6 +167,8 @@ def plot_indicator_number_of_days_per_year_at_location(
|
|
| 161 |
"""
|
| 162 |
indicator = params["indicator_column"]
|
| 163 |
location = params["location"]
|
|
|
|
|
|
|
| 164 |
|
| 165 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 166 |
"""Generate the figure thanks to the dataframe
|
|
@@ -195,15 +203,14 @@ def plot_indicator_number_of_days_per_year_at_location(
|
|
| 195 |
y=indicators,
|
| 196 |
width=0.5,
|
| 197 |
marker=dict(color="#1f77b4"),
|
|
|
|
| 198 |
)
|
| 199 |
)
|
| 200 |
|
| 201 |
-
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 202 |
-
|
| 203 |
fig.update_layout(
|
| 204 |
title=f"{indicator_label} in {location} ({model_label})",
|
| 205 |
xaxis_title="Year",
|
| 206 |
-
yaxis_title=
|
| 207 |
yaxis=dict(range=[0, max(indicators)]),
|
| 208 |
bargap=0.5,
|
| 209 |
template="plotly_white",
|
|
@@ -243,6 +250,7 @@ def plot_distribution_of_indicator_for_given_year(
|
|
| 243 |
indicator = params["indicator_column"]
|
| 244 |
year = params["year"]
|
| 245 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
|
|
|
| 246 |
|
| 247 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 248 |
"""Generate the figure thanks to the dataframe
|
|
@@ -277,13 +285,14 @@ def plot_distribution_of_indicator_for_given_year(
|
|
| 277 |
opacity=0.8,
|
| 278 |
histnorm="percent",
|
| 279 |
marker=dict(color="#1f77b4"),
|
|
|
|
| 280 |
)
|
| 281 |
)
|
| 282 |
|
| 283 |
fig.update_layout(
|
| 284 |
title=f"Distribution of {indicator_label} in {year} ({model_label})",
|
| 285 |
-
xaxis_title=indicator_label,
|
| 286 |
-
yaxis_title="Frequency",
|
| 287 |
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 288 |
showlegend=False,
|
| 289 |
)
|
|
@@ -322,6 +331,7 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
| 322 |
indicator = params["indicator_column"]
|
| 323 |
year = params["year"]
|
| 324 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
|
|
|
| 325 |
|
| 326 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 327 |
fig = go.Figure()
|
|
@@ -358,6 +368,8 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
| 358 |
cmax=max(indicators), # Maximum color range
|
| 359 |
showscale=True, # Show colorbar
|
| 360 |
),
|
|
|
|
|
|
|
| 361 |
)
|
| 362 |
)
|
| 363 |
|
|
@@ -365,7 +377,7 @@ def plot_map_of_france_of_indicator_for_given_year(
|
|
| 365 |
mapbox_style="open-street-map", # Use OpenStreetMap
|
| 366 |
mapbox_zoom=3,
|
| 367 |
mapbox_center={"lat": 46.6, "lon": 2.0},
|
| 368 |
-
coloraxis_colorbar=dict(title=f"{indicator_label}"), # Add legend
|
| 369 |
title=f"{indicator_label} in {year} in France ({model_label}) " # Title
|
| 370 |
)
|
| 371 |
return fig
|
|
|
|
| 9 |
indicator_for_given_year_query,
|
| 10 |
indicator_per_year_at_location_query,
|
| 11 |
)
|
| 12 |
+
from climateqa.engine.talk_to_data.config import INDICATOR_TO_UNIT
|
| 13 |
+
|
| 14 |
+
|
| 15 |
|
| 16 |
|
| 17 |
class Plot(TypedDict):
|
|
|
|
| 61 |
indicator = params["indicator_column"]
|
| 62 |
location = params["location"]
|
| 63 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 64 |
+
unit = INDICATOR_TO_UNIT.get(indicator, "")
|
| 65 |
|
| 66 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 67 |
"""Generates the actual plot from the data.
|
|
|
|
| 115 |
name=f"Yearly {indicator_label}",
|
| 116 |
mode="lines",
|
| 117 |
marker=dict(color="#1f77b4"),
|
| 118 |
+
hovertemplate=f"{indicator_label}: %{{y:.2f}} {unit}<br>Year: %{{x}}<extra></extra>"
|
| 119 |
)
|
| 120 |
|
| 121 |
# Sliding average dashed line
|
|
|
|
| 126 |
name="10 years rolling average",
|
| 127 |
line=dict(dash="dash"),
|
| 128 |
marker=dict(color="#d62728"),
|
| 129 |
+
hovertemplate=f"10-year average: %{{y:.2f}} {unit}<br>Year: %{{x}}<extra></extra>"
|
| 130 |
)
|
| 131 |
fig.update_layout(
|
| 132 |
title=f"Plot of {indicator_label} in {location} ({model_label})",
|
| 133 |
xaxis_title="Year",
|
| 134 |
+
yaxis_title=f"{indicator_label} ({unit})",
|
| 135 |
template="plotly_white",
|
| 136 |
)
|
| 137 |
return fig
|
|
|
|
| 167 |
"""
|
| 168 |
indicator = params["indicator_column"]
|
| 169 |
location = params["location"]
|
| 170 |
+
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 171 |
+
unit = INDICATOR_TO_UNIT.get(indicator, "")
|
| 172 |
|
| 173 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 174 |
"""Generate the figure thanks to the dataframe
|
|
|
|
| 203 |
y=indicators,
|
| 204 |
width=0.5,
|
| 205 |
marker=dict(color="#1f77b4"),
|
| 206 |
+
hovertemplate=f"{indicator_label}: %{{y:.2f}} {unit}<br>Year: %{{x}}<extra></extra>"
|
| 207 |
)
|
| 208 |
)
|
| 209 |
|
|
|
|
|
|
|
| 210 |
fig.update_layout(
|
| 211 |
title=f"{indicator_label} in {location} ({model_label})",
|
| 212 |
xaxis_title="Year",
|
| 213 |
+
yaxis_title=f"{indicator_label} ({unit})",
|
| 214 |
yaxis=dict(range=[0, max(indicators)]),
|
| 215 |
bargap=0.5,
|
| 216 |
template="plotly_white",
|
|
|
|
| 250 |
indicator = params["indicator_column"]
|
| 251 |
year = params["year"]
|
| 252 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 253 |
+
unit = INDICATOR_TO_UNIT.get(indicator, "")
|
| 254 |
|
| 255 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 256 |
"""Generate the figure thanks to the dataframe
|
|
|
|
| 285 |
opacity=0.8,
|
| 286 |
histnorm="percent",
|
| 287 |
marker=dict(color="#1f77b4"),
|
| 288 |
+
hovertemplate=f"{indicator_label}: %{{x:.2f}} {unit}<br>Frequency: %{{y:.2f}}%<extra></extra>"
|
| 289 |
)
|
| 290 |
)
|
| 291 |
|
| 292 |
fig.update_layout(
|
| 293 |
title=f"Distribution of {indicator_label} in {year} ({model_label})",
|
| 294 |
+
xaxis_title=f"{indicator_label} ({unit})",
|
| 295 |
+
yaxis_title="Frequency (%)",
|
| 296 |
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 297 |
showlegend=False,
|
| 298 |
)
|
|
|
|
| 331 |
indicator = params["indicator_column"]
|
| 332 |
year = params["year"]
|
| 333 |
indicator_label = " ".join([word.capitalize() for word in indicator.split("_")])
|
| 334 |
+
unit = INDICATOR_TO_UNIT.get(indicator, "")
|
| 335 |
|
| 336 |
def plot_data(df: pd.DataFrame) -> Figure:
|
| 337 |
fig = go.Figure()
|
|
|
|
| 368 |
cmax=max(indicators), # Maximum color range
|
| 369 |
showscale=True, # Show colorbar
|
| 370 |
),
|
| 371 |
+
text=[f"{indicator_label}: {value:.2f} {unit}" for value in indicators], # Add hover text showing the indicator value
|
| 372 |
+
hoverinfo="text" # Only show the custom text on hover
|
| 373 |
)
|
| 374 |
)
|
| 375 |
|
|
|
|
| 377 |
mapbox_style="open-street-map", # Use OpenStreetMap
|
| 378 |
mapbox_zoom=3,
|
| 379 |
mapbox_center={"lat": 46.6, "lon": 2.0},
|
| 380 |
+
coloraxis_colorbar=dict(title=f"{indicator_label} ({unit})"), # Add legend
|
| 381 |
title=f"{indicator_label} in {year} in France ({model_label}) " # Title
|
| 382 |
)
|
| 383 |
return fig
|
style.css
CHANGED
|
@@ -671,3 +671,26 @@ div#tab-vanna{
|
|
| 671 |
#table-names thead{
|
| 672 |
display: none;
|
| 673 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 671 |
#table-names thead{
|
| 672 |
display: none;
|
| 673 |
}
|
| 674 |
+
|
| 675 |
+
/* DRIAS Data Table Styles */
|
| 676 |
+
#vanna-table {
|
| 677 |
+
height: 400px !important;
|
| 678 |
+
overflow-y: auto !important;
|
| 679 |
+
}
|
| 680 |
+
|
| 681 |
+
#vanna-table > div[class*="table"] {
|
| 682 |
+
height: 400px !important;
|
| 683 |
+
overflow-y: None !important;
|
| 684 |
+
}
|
| 685 |
+
|
| 686 |
+
#vanna-table .table-wrap {
|
| 687 |
+
height: 400px !important;
|
| 688 |
+
overflow-y: None !important;
|
| 689 |
+
}
|
| 690 |
+
|
| 691 |
+
#vanna-table thead {
|
| 692 |
+
position: sticky;
|
| 693 |
+
top: 0;
|
| 694 |
+
background: white;
|
| 695 |
+
z-index: 1;
|
| 696 |
+
}
|