Added streamign
Browse files- app.py +91 -74
- climateqa/chains.py +9 -5
- climateqa/custom_retrieval_chain.py +63 -0
app.py
CHANGED
|
@@ -68,89 +68,77 @@ from langchain.callbacks.base import BaseCallbackHandler
|
|
| 68 |
from queue import Queue, Empty
|
| 69 |
from threading import Thread
|
| 70 |
from collections.abc import Generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
# Create a Queue
|
| 73 |
-
Q = Queue()
|
| 74 |
|
| 75 |
-
class QueueCallback(BaseCallbackHandler):
|
| 76 |
-
"""Callback handler for streaming LLM responses to a queue."""
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
self.q = q
|
| 80 |
|
| 81 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
self.q.put(token)
|
| 83 |
|
| 84 |
-
def on_llm_end(self,
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Create embeddings function and LLM
|
| 89 |
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
# Create vectorstore and retriever
|
| 95 |
vectorstore = get_pinecone_vectorstore(embeddings_function)
|
| 96 |
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = ["IPCC"],k_summary = 3,k_total = 10)
|
| 97 |
-
chain = load_climateqa_chain(retriever,
|
| 98 |
|
| 99 |
|
| 100 |
#---------------------------------------------------------------------------
|
| 101 |
# ClimateQ&A Streaming
|
| 102 |
# From https://github.com/gradio-app/gradio/issues/5345
|
|
|
|
| 103 |
#---------------------------------------------------------------------------
|
| 104 |
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
Q.queue.clear()
|
| 111 |
-
job_done = object()
|
| 112 |
-
|
| 113 |
-
# Create a function to call - this will run in a thread
|
| 114 |
-
def task():
|
| 115 |
-
answer = chain({"query":input_text,"audience":"expert climate scientist"})
|
| 116 |
-
Q.put(job_done)
|
| 117 |
-
|
| 118 |
-
# Create a thread and start the function
|
| 119 |
-
t = Thread(target=task)
|
| 120 |
-
t.start()
|
| 121 |
-
|
| 122 |
-
content = ""
|
| 123 |
-
|
| 124 |
-
# Get each new token from the queue and yield for our generator
|
| 125 |
-
while True:
|
| 126 |
-
try:
|
| 127 |
-
next_token = Q.get(True, timeout=1)
|
| 128 |
-
if next_token is job_done:
|
| 129 |
-
break
|
| 130 |
-
content += next_token
|
| 131 |
-
yield next_token, content
|
| 132 |
-
except Empty:
|
| 133 |
-
continue
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def stream_sentences(chain, input_text) -> Generator:
|
| 137 |
-
"""wrapper to stream function"""
|
| 138 |
-
sentence = ""
|
| 139 |
-
for next_token, content in stream(chain, input_text):
|
| 140 |
-
sentence += next_token
|
| 141 |
-
if "\n\n" in next_token:
|
| 142 |
-
yield sentence
|
| 143 |
-
sentence = ""
|
| 144 |
-
if sentence:
|
| 145 |
-
yield sentence
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
def answer_user(message,history):
|
| 151 |
return message, history + [[message, None]]
|
| 152 |
|
| 153 |
-
|
| 154 |
def answer_bot(message,history,audience):
|
| 155 |
|
| 156 |
if audience == "Children":
|
|
@@ -170,25 +158,39 @@ def answer_bot(message,history,audience):
|
|
| 170 |
# for next_token, content in stream(message):
|
| 171 |
# yield(content)
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
sources = output["source_documents"]
|
| 176 |
-
|
| 177 |
-
if len(sources) > 0:
|
| 178 |
-
sources_text = []
|
| 179 |
-
for i, d in enumerate(sources, 1):
|
| 180 |
-
sources_text.append(make_html_source(d,i))
|
| 181 |
-
sources_text = "\n\n".join([f"Query used for retrieval:\n{question}"] + sources_text)
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
|
| 189 |
-
history[-1][1] = complete_response
|
| 190 |
-
return "",history, sources_text
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
#---------------------------------------------------------------------------
|
| 194 |
# ClimateQ&A core functions
|
|
@@ -348,7 +350,19 @@ def log_on_azure(file, logs, share_client):
|
|
| 348 |
# --------------------------------------------------------------------
|
| 349 |
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
|
| 354 |
with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
@@ -363,7 +377,9 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
| 363 |
with gr.Row(elem_id="chatbot-row"):
|
| 364 |
with gr.Column(scale=2):
|
| 365 |
# state = gr.State([system_template])
|
| 366 |
-
bot = gr.Chatbot(
|
|
|
|
|
|
|
| 367 |
|
| 368 |
with gr.Row(elem_id = "input-message"):
|
| 369 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7)
|
|
@@ -441,7 +457,6 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
| 441 |
examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
|
| 442 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
| 443 |
)
|
| 444 |
-
|
| 445 |
submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
| 446 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
| 447 |
)
|
|
@@ -619,6 +634,8 @@ Or around 2 to 4 times more than a typical Google search.
|
|
| 619 |
- ClimateQ&A on Hugging Face is finally working again with all the new features !
|
| 620 |
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
|
| 621 |
- Updated GPT model to August version
|
|
|
|
|
|
|
| 622 |
- Use of HuggingFace embed on https://climateqa.com to avoid demultiplying deployments
|
| 623 |
|
| 624 |
##### v1.0.0 - *2023-05-11*
|
|
|
|
| 68 |
from queue import Queue, Empty
|
| 69 |
from threading import Thread
|
| 70 |
from collections.abc import Generator
|
| 71 |
+
from langchain.schema import LLMResult
|
| 72 |
+
from typing import Any, Union,Dict,List
|
| 73 |
+
from queue import SimpleQueue
|
| 74 |
+
# # Create a Queue
|
| 75 |
+
# Q = Queue()
|
| 76 |
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
Q = SimpleQueue()
|
| 80 |
+
job_done = object() # signals the processing is done
|
| 81 |
+
|
| 82 |
+
class StreamingGradioCallbackHandler(BaseCallbackHandler):
|
| 83 |
+
def __init__(self, q: SimpleQueue):
|
| 84 |
self.q = q
|
| 85 |
|
| 86 |
+
def on_llm_start(
|
| 87 |
+
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
| 88 |
+
) -> None:
|
| 89 |
+
"""Run when LLM starts running. Clean the queue."""
|
| 90 |
+
while not self.q.empty():
|
| 91 |
+
try:
|
| 92 |
+
self.q.get(block=False)
|
| 93 |
+
except Empty:
|
| 94 |
+
continue
|
| 95 |
+
|
| 96 |
+
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
| 97 |
+
"""Run on new LLM token. Only available when streaming is enabled."""
|
| 98 |
self.q.put(token)
|
| 99 |
|
| 100 |
+
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
| 101 |
+
"""Run when LLM ends running."""
|
| 102 |
+
self.q.put(job_done)
|
| 103 |
+
|
| 104 |
+
def on_llm_error(
|
| 105 |
+
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
| 106 |
+
) -> None:
|
| 107 |
+
"""Run when LLM errors."""
|
| 108 |
+
self.q.put(job_done)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
|
| 113 |
# Create embeddings function and LLM
|
| 114 |
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 115 |
+
llm_reformulation = get_llm(max_tokens = 512,temperature = 0.0,verbose = True,streaming = False)
|
| 116 |
+
llm_streaming = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
|
| 117 |
+
callbacks=[StreamingGradioCallbackHandler(Q),StreamingStdOutCallbackHandler()],
|
| 118 |
)
|
| 119 |
|
| 120 |
# Create vectorstore and retriever
|
| 121 |
vectorstore = get_pinecone_vectorstore(embeddings_function)
|
| 122 |
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = ["IPCC"],k_summary = 3,k_total = 10)
|
| 123 |
+
chain = load_climateqa_chain(retriever,llm_reformulation,llm_streaming)
|
| 124 |
|
| 125 |
|
| 126 |
#---------------------------------------------------------------------------
|
| 127 |
# ClimateQ&A Streaming
|
| 128 |
# From https://github.com/gradio-app/gradio/issues/5345
|
| 129 |
+
# And https://stackoverflow.com/questions/76057076/how-to-stream-agents-response-in-langchain
|
| 130 |
#---------------------------------------------------------------------------
|
| 131 |
|
| 132 |
+
from threading import Thread
|
| 133 |
|
| 134 |
+
def threaded_chain(query,audience):
|
| 135 |
+
response = chain({"query":query,"audience":audience})
|
| 136 |
+
Q.put(response)
|
| 137 |
+
Q.put(job_done)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
def answer_user(message,history):
|
| 140 |
return message, history + [[message, None]]
|
| 141 |
|
|
|
|
| 142 |
def answer_bot(message,history,audience):
|
| 143 |
|
| 144 |
if audience == "Children":
|
|
|
|
| 158 |
# for next_token, content in stream(message):
|
| 159 |
# yield(content)
|
| 160 |
|
| 161 |
+
thread = Thread(target=threaded_chain, kwargs={"query":message,"audience":audience_prompt})
|
| 162 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
history[-1][1] = ""
|
| 165 |
+
while True:
|
| 166 |
+
next_item = Q.get(block=True) # Blocks until an input is available
|
| 167 |
|
| 168 |
+
if next_item is job_done:
|
| 169 |
+
continue
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
elif isinstance(next_item, dict): # assuming LLMResult is a dictionary
|
| 172 |
+
response = next_item
|
| 173 |
+
if "source_documents" in response and len(response["source_documents"]) > 0:
|
| 174 |
+
sources_text = []
|
| 175 |
+
for i, d in enumerate(response["source_documents"], 1):
|
| 176 |
+
sources_text.append(make_html_source(d, i))
|
| 177 |
+
sources_text = "\n\n".join([f"Query used for retrieval:\n{response['question']}"] + sources_text)
|
| 178 |
+
# history[-1][1] += next_item["answer"]
|
| 179 |
+
# history[-1][1] += "\n\n" + sources_text
|
| 180 |
+
yield "", history, sources_text
|
| 181 |
+
|
| 182 |
+
else:
|
| 183 |
+
sources_text = "⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
|
| 184 |
+
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
| 185 |
+
history[-1][1] += "\n\n" + complete_response
|
| 186 |
+
yield "", history, sources_text
|
| 187 |
+
break
|
| 188 |
+
|
| 189 |
+
elif isinstance(next_item, str):
|
| 190 |
+
history[-1][1] += next_item
|
| 191 |
+
yield "", history, ""
|
| 192 |
+
|
| 193 |
+
thread.join()
|
| 194 |
|
| 195 |
#---------------------------------------------------------------------------
|
| 196 |
# ClimateQ&A core functions
|
|
|
|
| 350 |
# --------------------------------------------------------------------
|
| 351 |
|
| 352 |
|
| 353 |
+
init_prompt = """
|
| 354 |
+
Hello ! I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
|
| 355 |
+
|
| 356 |
+
💡 How to use
|
| 357 |
+
- **Language**: You can ask me your questions in any language.
|
| 358 |
+
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
|
| 359 |
+
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
|
| 360 |
|
| 361 |
+
📚 Limitations
|
| 362 |
+
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
|
| 363 |
+
|
| 364 |
+
❓ What do you want to learn ?
|
| 365 |
+
"""
|
| 366 |
|
| 367 |
|
| 368 |
with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
|
|
| 377 |
with gr.Row(elem_id="chatbot-row"):
|
| 378 |
with gr.Column(scale=2):
|
| 379 |
# state = gr.State([system_template])
|
| 380 |
+
bot = gr.Chatbot(
|
| 381 |
+
value=[[None,init_prompt]],
|
| 382 |
+
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",avatar_images = ("assets/logo4.png",None))
|
| 383 |
|
| 384 |
with gr.Row(elem_id = "input-message"):
|
| 385 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7)
|
|
|
|
| 457 |
examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
|
| 458 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
| 459 |
)
|
|
|
|
| 460 |
submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
| 461 |
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
| 462 |
)
|
|
|
|
| 634 |
- ClimateQ&A on Hugging Face is finally working again with all the new features !
|
| 635 |
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
|
| 636 |
- Updated GPT model to August version
|
| 637 |
+
- Added streaming response to improve UX
|
| 638 |
+
- Created a custom Retriever chain to avoid calling the LLM if there is no documents retrieved
|
| 639 |
- Use of HuggingFace embed on https://climateqa.com to avoid demultiplying deployments
|
| 640 |
|
| 641 |
##### v1.0.0 - *2023-05-11*
|
climateqa/chains.py
CHANGED
|
@@ -8,7 +8,7 @@ from langchain.chains import TransformChain, SequentialChain
|
|
| 8 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
| 9 |
|
| 10 |
from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts
|
| 11 |
-
|
| 12 |
|
| 13 |
def load_reformulation_chain(llm):
|
| 14 |
|
|
@@ -38,6 +38,7 @@ def load_reformulation_chain(llm):
|
|
| 38 |
|
| 39 |
|
| 40 |
|
|
|
|
| 41 |
def load_answer_chain(retriever,llm):
|
| 42 |
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
|
| 43 |
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
|
|
@@ -45,24 +46,27 @@ def load_answer_chain(retriever,llm):
|
|
| 45 |
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
|
| 46 |
# See here https://github.com/langchain-ai/langchain/issues/3523
|
| 47 |
|
| 48 |
-
answer_chain =
|
| 49 |
combine_documents_chain = qa_chain,
|
| 50 |
retriever=retriever,
|
| 51 |
return_source_documents = True,
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
return answer_chain
|
| 54 |
|
| 55 |
|
| 56 |
-
def load_climateqa_chain(retriever,
|
| 57 |
|
| 58 |
-
reformulation_chain = load_reformulation_chain(
|
| 59 |
-
answer_chain = load_answer_chain(retriever,
|
| 60 |
|
| 61 |
climateqa_chain = SequentialChain(
|
| 62 |
chains = [reformulation_chain,answer_chain],
|
| 63 |
input_variables=["query","audience"],
|
| 64 |
output_variables=["answer","question","language","source_documents"],
|
| 65 |
return_all = True,
|
|
|
|
| 66 |
)
|
| 67 |
return climateqa_chain
|
| 68 |
|
|
|
|
| 8 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
| 9 |
|
| 10 |
from climateqa.prompts import answer_prompt, reformulation_prompt,audience_prompts
|
| 11 |
+
from climateqa.custom_retrieval_chain import CustomRetrievalQAWithSourcesChain
|
| 12 |
|
| 13 |
def load_reformulation_chain(llm):
|
| 14 |
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
|
| 41 |
+
|
| 42 |
def load_answer_chain(retriever,llm):
|
| 43 |
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
|
| 44 |
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
|
|
|
|
| 46 |
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
|
| 47 |
# See here https://github.com/langchain-ai/langchain/issues/3523
|
| 48 |
|
| 49 |
+
answer_chain = CustomRetrievalQAWithSourcesChain(
|
| 50 |
combine_documents_chain = qa_chain,
|
| 51 |
retriever=retriever,
|
| 52 |
return_source_documents = True,
|
| 53 |
+
verbose = True,
|
| 54 |
+
fallback_answer="**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**",
|
| 55 |
)
|
| 56 |
return answer_chain
|
| 57 |
|
| 58 |
|
| 59 |
+
def load_climateqa_chain(retriever,llm_reformulation,llm_answer):
|
| 60 |
|
| 61 |
+
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
| 62 |
+
answer_chain = load_answer_chain(retriever,llm_answer)
|
| 63 |
|
| 64 |
climateqa_chain = SequentialChain(
|
| 65 |
chains = [reformulation_chain,answer_chain],
|
| 66 |
input_variables=["query","audience"],
|
| 67 |
output_variables=["answer","question","language","source_documents"],
|
| 68 |
return_all = True,
|
| 69 |
+
verbose = True,
|
| 70 |
)
|
| 71 |
return climateqa_chain
|
| 72 |
|
climateqa/custom_retrieval_chain.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import inspect
|
| 3 |
+
from typing import Any, Dict, List, Optional
|
| 4 |
+
|
| 5 |
+
from pydantic import Extra
|
| 6 |
+
|
| 7 |
+
from langchain.schema.language_model import BaseLanguageModel
|
| 8 |
+
from langchain.callbacks.manager import (
|
| 9 |
+
AsyncCallbackManagerForChainRun,
|
| 10 |
+
CallbackManagerForChainRun,
|
| 11 |
+
)
|
| 12 |
+
from langchain.chains.base import Chain
|
| 13 |
+
from langchain.prompts.base import BasePromptTemplate
|
| 14 |
+
|
| 15 |
+
from typing import Any, Dict, List
|
| 16 |
+
|
| 17 |
+
from langchain.callbacks.manager import (
|
| 18 |
+
AsyncCallbackManagerForChainRun,
|
| 19 |
+
CallbackManagerForChainRun,
|
| 20 |
+
)
|
| 21 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
| 22 |
+
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
|
| 23 |
+
from langchain.docstore.document import Document
|
| 24 |
+
from langchain.pydantic_v1 import Field
|
| 25 |
+
from langchain.schema import BaseRetriever
|
| 26 |
+
|
| 27 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
from langchain.chains.router.llm_router import LLMRouterChain
|
| 31 |
+
|
| 32 |
+
class CustomRetrievalQAWithSourcesChain(RetrievalQAWithSourcesChain):
|
| 33 |
+
|
| 34 |
+
fallback_answer:str = "No sources available to answer this question."
|
| 35 |
+
|
| 36 |
+
def _call(self,inputs,run_manager=None):
|
| 37 |
+
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
| 38 |
+
accepts_run_manager = (
|
| 39 |
+
"run_manager" in inspect.signature(self._get_docs).parameters
|
| 40 |
+
)
|
| 41 |
+
if accepts_run_manager:
|
| 42 |
+
docs = self._get_docs(inputs, run_manager=_run_manager)
|
| 43 |
+
else:
|
| 44 |
+
docs = self._get_docs(inputs) # type: ignore[call-arg]
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if len(docs) == 0:
|
| 48 |
+
answer = self.fallback_answer
|
| 49 |
+
sources = []
|
| 50 |
+
else:
|
| 51 |
+
|
| 52 |
+
answer = self.combine_documents_chain.run(
|
| 53 |
+
input_documents=docs, callbacks=_run_manager.get_child(), **inputs
|
| 54 |
+
)
|
| 55 |
+
answer, sources = self._split_sources(answer)
|
| 56 |
+
|
| 57 |
+
result: Dict[str, Any] = {
|
| 58 |
+
self.answer_key: answer,
|
| 59 |
+
self.sources_answer_key: sources,
|
| 60 |
+
}
|
| 61 |
+
if self.return_source_documents:
|
| 62 |
+
result["source_documents"] = docs
|
| 63 |
+
return result
|