Merge branch 'dev' into feat/talk_to_data_graph
Browse files- app.py +51 -80
- climateqa/chat.py +11 -3
- climateqa/engine/chains/answer_rag.py +4 -2
- climateqa/engine/chains/follow_up.py +32 -0
- climateqa/engine/chains/retrieve_documents.py +2 -8
- climateqa/engine/chains/standalone_question.py +39 -0
- climateqa/engine/graph.py +36 -19
- front/tabs/__init__.py +4 -1
- front/tabs/chat_interface.py +15 -12
- front/tabs/main_tab.py +59 -27
- front/tabs/tab_config.py +19 -29
- style.css +31 -1
    	
        app.py
    CHANGED
    
    | @@ -15,7 +15,8 @@ from climateqa.chat import start_chat, chat_stream, finish_chat | |
| 15 | 
             
            from climateqa.engine.talk_to_data.main import ask_drias, DRIAS_MODELS
         | 
| 16 | 
             
            from climateqa.engine.talk_to_data.myVanna import MyVanna
         | 
| 17 |  | 
| 18 | 
            -
            from front.tabs import (create_config_modal,  | 
|  | |
| 19 | 
             
            from front.utils import process_figures
         | 
| 20 | 
             
            from gradio_modal import Modal
         | 
| 21 |  | 
| @@ -239,39 +240,12 @@ def cqa_tab(tab_name): | |
| 239 | 
             
                                            )
         | 
| 240 |  | 
| 241 |  | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
| 244 | 
            -
             | 
| 245 | 
            -
             | 
| 246 | 
            -
                    "sources_raw": sources_raw,
         | 
| 247 | 
            -
                    "new_figures": new_figures,
         | 
| 248 | 
            -
                    "current_graphs": current_graphs,
         | 
| 249 | 
            -
                    "examples_hidden": examples_hidden,
         | 
| 250 | 
            -
                    "sources_textbox": sources_textbox,
         | 
| 251 | 
            -
                    "figures_cards": figures_cards,
         | 
| 252 | 
            -
                    "gallery_component": gallery_component,
         | 
| 253 | 
            -
                    "config_button": config_button,
         | 
| 254 | 
            -
                    "papers_direct_search" : papers_direct_search,
         | 
| 255 | 
            -
                    "papers_html": papers_html,
         | 
| 256 | 
            -
                    "citations_network": citations_network,
         | 
| 257 | 
            -
                    "papers_summary": papers_summary,
         | 
| 258 | 
            -
                    "tab_recommended_content": tab_recommended_content,
         | 
| 259 | 
            -
                    "tab_sources": tab_sources,
         | 
| 260 | 
            -
                    "tab_figures": tab_figures,
         | 
| 261 | 
            -
                    "tab_graphs": tab_graphs,
         | 
| 262 | 
            -
                    "tab_papers": tab_papers,
         | 
| 263 | 
            -
                    "graph_container": graphs_container,
         | 
| 264 | 
            -
                    # "vanna_sql_query": vanna_sql_query,
         | 
| 265 | 
            -
                    # "vanna_table" : vanna_table,
         | 
| 266 | 
            -
                    # "vanna_display": vanna_display
         | 
| 267 | 
            -
                }
         | 
| 268 | 
            -
                                            
         | 
| 269 | 
            -
            def config_event_handling(main_tabs_components : list[dict], config_componenets : dict):
         | 
| 270 | 
            -
                config_open = config_componenets["config_open"]
         | 
| 271 | 
            -
                config_modal = config_componenets["config_modal"]
         | 
| 272 | 
            -
                close_config_modal = config_componenets["close_config_modal_button"]
         | 
| 273 |  | 
| 274 | 
            -
                for button in [close_config_modal] + [main_tab_component | 
| 275 | 
             
                    button.click(
         | 
| 276 | 
             
                        fn=update_config_modal_visibility,
         | 
| 277 | 
             
                        inputs=[config_open],
         | 
| @@ -279,58 +253,45 @@ def config_event_handling(main_tabs_components : list[dict], config_componenets | |
| 279 | 
             
                    ) 
         | 
| 280 |  | 
| 281 | 
             
            def event_handling(
         | 
| 282 | 
            -
                main_tab_components,
         | 
| 283 | 
            -
                config_components,
         | 
| 284 | 
             
                tab_name="ClimateQ&A"
         | 
| 285 | 
             
            ):
         | 
| 286 | 
            -
                chatbot = main_tab_components | 
| 287 | 
            -
                textbox = main_tab_components | 
| 288 | 
            -
                tabs = main_tab_components | 
| 289 | 
            -
                sources_raw = main_tab_components | 
| 290 | 
            -
                new_figures = main_tab_components | 
| 291 | 
            -
                current_graphs = main_tab_components | 
| 292 | 
            -
                examples_hidden = main_tab_components | 
| 293 | 
            -
                sources_textbox = main_tab_components | 
| 294 | 
            -
                figures_cards = main_tab_components | 
| 295 | 
            -
                gallery_component = main_tab_components | 
| 296 | 
            -
                 | 
| 297 | 
            -
                 | 
| 298 | 
            -
                 | 
| 299 | 
            -
                 | 
| 300 | 
            -
                 | 
| 301 | 
            -
                 | 
| 302 | 
            -
                 | 
| 303 | 
            -
                 | 
| 304 | 
            -
                 | 
| 305 | 
            -
                 | 
| 306 | 
            -
                 | 
| 307 | 
            -
                 | 
| 308 | 
            -
                # vanna_table = main_tab_components["vanna_table"]
         | 
| 309 | 
            -
                # vanna_display = main_tab_components["vanna_display"]
         | 
| 310 | 
            -
                
         | 
| 311 |  | 
| 312 | 
            -
                 | 
| 313 | 
            -
                 | 
| 314 | 
            -
                 | 
| 315 | 
            -
                 | 
| 316 | 
            -
                 | 
| 317 | 
            -
                 | 
| 318 | 
            -
                 | 
| 319 | 
            -
                 | 
| 320 | 
            -
                output_query = config_components["output_query"]
         | 
| 321 | 
            -
                output_language = config_components["output_language"]
         | 
| 322 | 
            -
                # close_config_modal = config_components["close_config_modal_button"]
         | 
| 323 |  | 
| 324 | 
             
                new_sources_hmtl = gr.State([])
         | 
| 325 | 
             
                ttd_data = gr.State([])
         | 
| 326 |  | 
| 327 | 
            -
                 
         | 
| 328 | 
            -
                # for button in [config_button, close_config_modal]:
         | 
| 329 | 
            -
                #     button.click(
         | 
| 330 | 
            -
                #         fn=update_config_modal_visibility,
         | 
| 331 | 
            -
                #         inputs=[config_open],
         | 
| 332 | 
            -
                #         outputs=[config_modal, config_open]
         | 
| 333 | 
            -
                #     )
         | 
| 334 |  | 
| 335 | 
             
                if tab_name == "ClimateQ&A":
         | 
| 336 | 
             
                    print("chat cqa - message sent")
         | 
| @@ -338,15 +299,20 @@ def event_handling( | |
| 338 | 
             
                    # Event for textbox
         | 
| 339 | 
             
                    (textbox
         | 
| 340 | 
             
                        .submit(start_chat, [textbox, chatbot, search_only], [textbox, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{textbox.elem_id}")
         | 
| 341 | 
            -
                        .then(chat, [textbox, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name=f"chat_{textbox.elem_id}")
         | 
| 342 | 
             
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{textbox.elem_id}")
         | 
| 343 | 
             
                    )
         | 
| 344 | 
             
                    # Event for examples_hidden
         | 
| 345 | 
             
                    (examples_hidden
         | 
| 346 | 
             
                        .change(start_chat, [examples_hidden, chatbot, search_only], [examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
         | 
| 347 | 
            -
                        .then(chat, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
         | 
| 348 | 
             
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{examples_hidden.elem_id}")
         | 
| 349 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 350 |  | 
| 351 | 
             
                elif tab_name == "Beta - POC Adapt'Action":
         | 
| 352 | 
             
                    print("chat poc - message sent")
         | 
| @@ -362,6 +328,11 @@ def event_handling( | |
| 362 | 
             
                        .then(chat_poc, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
         | 
| 363 | 
             
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{examples_hidden.elem_id}")
         | 
| 364 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 365 |  | 
| 366 |  | 
| 367 | 
             
                new_sources_hmtl.change(lambda x : x, inputs = [new_sources_hmtl], outputs = [sources_textbox])
         | 
|  | |
| 15 | 
             
            from climateqa.engine.talk_to_data.main import ask_drias, DRIAS_MODELS
         | 
| 16 | 
             
            from climateqa.engine.talk_to_data.myVanna import MyVanna
         | 
| 17 |  | 
| 18 | 
            +
            from front.tabs import (create_config_modal, cqa_tab, create_about_tab)
         | 
| 19 | 
            +
            from front.tabs import (MainTabPanel, ConfigPanel)
         | 
| 20 | 
             
            from front.utils import process_figures
         | 
| 21 | 
             
            from gradio_modal import Modal
         | 
| 22 |  | 
|  | |
| 240 | 
             
                                            )
         | 
| 241 |  | 
| 242 |  | 
| 243 | 
            +
            def config_event_handling(main_tabs_components : list[MainTabPanel], config_componenets : ConfigPanel):
         | 
| 244 | 
            +
                config_open = config_componenets.config_open
         | 
| 245 | 
            +
                config_modal = config_componenets.config_modal
         | 
| 246 | 
            +
                close_config_modal = config_componenets.close_config_modal_button
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 247 |  | 
| 248 | 
            +
                for button in [close_config_modal] + [main_tab_component.config_button for main_tab_component in main_tabs_components]:
         | 
| 249 | 
             
                    button.click(
         | 
| 250 | 
             
                        fn=update_config_modal_visibility,
         | 
| 251 | 
             
                        inputs=[config_open],
         | 
|  | |
| 253 | 
             
                    ) 
         | 
| 254 |  | 
| 255 | 
             
            def event_handling(
         | 
| 256 | 
            +
                main_tab_components : MainTabPanel,
         | 
| 257 | 
            +
                config_components : ConfigPanel,
         | 
| 258 | 
             
                tab_name="ClimateQ&A"
         | 
| 259 | 
             
            ):
         | 
| 260 | 
            +
                chatbot = main_tab_components.chatbot
         | 
| 261 | 
            +
                textbox = main_tab_components.textbox
         | 
| 262 | 
            +
                tabs = main_tab_components.tabs
         | 
| 263 | 
            +
                sources_raw = main_tab_components.sources_raw
         | 
| 264 | 
            +
                new_figures = main_tab_components.new_figures
         | 
| 265 | 
            +
                current_graphs = main_tab_components.current_graphs
         | 
| 266 | 
            +
                examples_hidden = main_tab_components.examples_hidden
         | 
| 267 | 
            +
                sources_textbox = main_tab_components.sources_textbox
         | 
| 268 | 
            +
                figures_cards = main_tab_components.figures_cards
         | 
| 269 | 
            +
                gallery_component = main_tab_components.gallery_component
         | 
| 270 | 
            +
                papers_direct_search = main_tab_components.papers_direct_search
         | 
| 271 | 
            +
                papers_html = main_tab_components.papers_html
         | 
| 272 | 
            +
                citations_network = main_tab_components.citations_network
         | 
| 273 | 
            +
                papers_summary = main_tab_components.papers_summary
         | 
| 274 | 
            +
                tab_recommended_content = main_tab_components.tab_recommended_content
         | 
| 275 | 
            +
                tab_sources = main_tab_components.tab_sources
         | 
| 276 | 
            +
                tab_figures = main_tab_components.tab_figures
         | 
| 277 | 
            +
                tab_graphs = main_tab_components.tab_graphs
         | 
| 278 | 
            +
                tab_papers = main_tab_components.tab_papers
         | 
| 279 | 
            +
                graphs_container = main_tab_components.graph_container
         | 
| 280 | 
            +
                follow_up_examples = main_tab_components.follow_up_examples
         | 
| 281 | 
            +
                follow_up_examples_hidden = main_tab_components.follow_up_examples_hidden
         | 
|  | |
|  | |
|  | |
| 282 |  | 
| 283 | 
            +
                dropdown_sources = config_components.dropdown_sources
         | 
| 284 | 
            +
                dropdown_reports = config_components.dropdown_reports
         | 
| 285 | 
            +
                dropdown_external_sources = config_components.dropdown_external_sources
         | 
| 286 | 
            +
                search_only = config_components.search_only
         | 
| 287 | 
            +
                dropdown_audience = config_components.dropdown_audience
         | 
| 288 | 
            +
                after = config_components.after
         | 
| 289 | 
            +
                output_query = config_components.output_query
         | 
| 290 | 
            +
                output_language = config_components.output_language
         | 
|  | |
|  | |
|  | |
| 291 |  | 
| 292 | 
             
                new_sources_hmtl = gr.State([])
         | 
| 293 | 
             
                ttd_data = gr.State([])
         | 
| 294 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 295 |  | 
| 296 | 
             
                if tab_name == "ClimateQ&A":
         | 
| 297 | 
             
                    print("chat cqa - message sent")
         | 
|  | |
| 299 | 
             
                    # Event for textbox
         | 
| 300 | 
             
                    (textbox
         | 
| 301 | 
             
                        .submit(start_chat, [textbox, chatbot, search_only], [textbox, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{textbox.elem_id}")
         | 
| 302 | 
            +
                        .then(chat, [textbox, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs, follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{textbox.elem_id}")
         | 
| 303 | 
             
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{textbox.elem_id}")
         | 
| 304 | 
             
                    )
         | 
| 305 | 
             
                    # Event for examples_hidden
         | 
| 306 | 
             
                    (examples_hidden
         | 
| 307 | 
             
                        .change(start_chat, [examples_hidden, chatbot, search_only], [examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
         | 
| 308 | 
            +
                        .then(chat, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs,follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
         | 
| 309 | 
             
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{examples_hidden.elem_id}")
         | 
| 310 | 
             
                    )
         | 
| 311 | 
            +
                    (follow_up_examples_hidden
         | 
| 312 | 
            +
                        .change(start_chat, [follow_up_examples_hidden, chatbot, search_only], [follow_up_examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
         | 
| 313 | 
            +
                        .then(chat, [follow_up_examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs,follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
         | 
| 314 | 
            +
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{follow_up_examples_hidden.elem_id}")
         | 
| 315 | 
            +
                    )
         | 
| 316 |  | 
| 317 | 
             
                elif tab_name == "Beta - POC Adapt'Action":
         | 
| 318 | 
             
                    print("chat poc - message sent")
         | 
|  | |
| 328 | 
             
                        .then(chat_poc, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
         | 
| 329 | 
             
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{examples_hidden.elem_id}")
         | 
| 330 | 
             
                    )
         | 
| 331 | 
            +
                    (follow_up_examples_hidden
         | 
| 332 | 
            +
                        .change(start_chat, [follow_up_examples_hidden, chatbot, search_only], [follow_up_examples_hidden, tabs, chatbot, sources_raw], queue=False, api_name=f"start_chat_{examples_hidden.elem_id}")
         | 
| 333 | 
            +
                        .then(chat, [follow_up_examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, new_sources_hmtl, output_query, output_language, new_figures, current_graphs,follow_up_examples.dataset], concurrency_limit=8, api_name=f"chat_{examples_hidden.elem_id}")
         | 
| 334 | 
            +
                        .then(finish_chat, None, [textbox], api_name=f"finish_chat_{follow_up_examples_hidden.elem_id}")
         | 
| 335 | 
            +
                    )
         | 
| 336 |  | 
| 337 |  | 
| 338 | 
             
                new_sources_hmtl.change(lambda x : x, inputs = [new_sources_hmtl], outputs = [sources_textbox])
         | 
    	
        climateqa/chat.py
    CHANGED
    
    | @@ -101,6 +101,7 @@ async def chat_stream( | |
| 101 | 
             
                audience_prompt = init_audience(audience)
         | 
| 102 | 
             
                sources = sources or ["IPCC", "IPBES"]
         | 
| 103 | 
             
                reports = reports or []
         | 
|  | |
| 104 |  | 
| 105 | 
             
                # Prepare inputs for agent
         | 
| 106 | 
             
                inputs = {
         | 
| @@ -109,7 +110,8 @@ async def chat_stream( | |
| 109 | 
             
                    "sources_input": sources,
         | 
| 110 | 
             
                    "relevant_content_sources_selection": relevant_content_sources_selection,
         | 
| 111 | 
             
                    "search_only": search_only,
         | 
| 112 | 
            -
                    "reports": reports
         | 
|  | |
| 113 | 
             
                }
         | 
| 114 |  | 
| 115 | 
             
                # Get streaming events from agent
         | 
| @@ -129,6 +131,7 @@ async def chat_stream( | |
| 129 | 
             
                retrieved_contents = []
         | 
| 130 | 
             
                answer_message_content = ""
         | 
| 131 | 
             
                vanna_data = {}
         | 
|  | |
| 132 |  | 
| 133 | 
             
                # Define processing steps
         | 
| 134 | 
             
                steps_display = {
         | 
| @@ -200,7 +203,12 @@ async def chat_stream( | |
| 200 | 
             
                                    sub_questions = [q["question"] + "-> relevant sources : " + str(q["sources"]) for q in event["data"]["output"]["questions_list"]]
         | 
| 201 | 
             
                                    history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
         | 
| 202 |  | 
| 203 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 204 |  | 
| 205 | 
             
                except Exception as e:
         | 
| 206 | 
             
                    print(f"Event {event} has failed")
         | 
| @@ -211,4 +219,4 @@ async def chat_stream( | |
| 211 | 
             
                # Call the function to log interaction
         | 
| 212 | 
             
                log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id)
         | 
| 213 |  | 
| 214 | 
            -
                yield history, docs_html, output_query, output_language, related_contents, graphs_html#, vanna_data
         | 
|  | |
| 101 | 
             
                audience_prompt = init_audience(audience)
         | 
| 102 | 
             
                sources = sources or ["IPCC", "IPBES"]
         | 
| 103 | 
             
                reports = reports or []
         | 
| 104 | 
            +
                relevant_history_discussion = history[-2:] if len(history) > 1 else []
         | 
| 105 |  | 
| 106 | 
             
                # Prepare inputs for agent
         | 
| 107 | 
             
                inputs = {
         | 
|  | |
| 110 | 
             
                    "sources_input": sources,
         | 
| 111 | 
             
                    "relevant_content_sources_selection": relevant_content_sources_selection,
         | 
| 112 | 
             
                    "search_only": search_only,
         | 
| 113 | 
            +
                    "reports": reports,
         | 
| 114 | 
            +
                    "chat_history": relevant_history_discussion,
         | 
| 115 | 
             
                }
         | 
| 116 |  | 
| 117 | 
             
                # Get streaming events from agent
         | 
|  | |
| 131 | 
             
                retrieved_contents = []
         | 
| 132 | 
             
                answer_message_content = ""
         | 
| 133 | 
             
                vanna_data = {}
         | 
| 134 | 
            +
                follow_up_examples = gr.Dataset(samples=[])
         | 
| 135 |  | 
| 136 | 
             
                # Define processing steps
         | 
| 137 | 
             
                steps_display = {
         | 
|  | |
| 203 | 
             
                                    sub_questions = [q["question"] + "-> relevant sources : " + str(q["sources"]) for q in event["data"]["output"]["questions_list"]]
         | 
| 204 | 
             
                                    history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
         | 
| 205 |  | 
| 206 | 
            +
                            # Handle follow up questions
         | 
| 207 | 
            +
                            if event["name"] == "generate_follow_up" and event["event"] == "on_chain_end": 
         | 
| 208 | 
            +
                                follow_up_examples = event["data"]["output"].get("follow_up_questions", [])
         | 
| 209 | 
            +
                                follow_up_examples = gr.Dataset(samples= [ [question] for question in follow_up_examples ])
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                        yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
         | 
| 212 |  | 
| 213 | 
             
                except Exception as e:
         | 
| 214 | 
             
                    print(f"Event {event} has failed")
         | 
|  | |
| 219 | 
             
                # Call the function to log interaction
         | 
| 220 | 
             
                log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id)
         | 
| 221 |  | 
| 222 | 
            +
                yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
         | 
    	
        climateqa/engine/chains/answer_rag.py
    CHANGED
    
    | @@ -65,6 +65,7 @@ def make_rag_node(llm,with_docs = True): | |
| 65 | 
             
                async def answer_rag(state,config):
         | 
| 66 | 
             
                    print("---- Answer RAG ----")
         | 
| 67 | 
             
                    start_time = time.time()
         | 
|  | |
| 68 | 
             
                    print("Sources used : " +  "\n".join([x.metadata["short_name"] + " - page " + str(x.metadata["page_number"])  for x in state["documents"]]))
         | 
| 69 |  | 
| 70 | 
             
                    answer = await rag_chain.ainvoke(state,config)
         | 
| @@ -73,9 +74,10 @@ def make_rag_node(llm,with_docs = True): | |
| 73 | 
             
                    elapsed_time = end_time - start_time
         | 
| 74 | 
             
                    print("RAG elapsed time: ", elapsed_time)
         | 
| 75 | 
             
                    print("Answer size : ", len(answer))
         | 
| 76 | 
            -
                    # print(f"\n\nAnswer:\n{answer}")
         | 
| 77 |  | 
| 78 | 
            -
                     | 
|  | |
|  | |
| 79 |  | 
| 80 | 
             
                return answer_rag
         | 
| 81 |  | 
|  | |
| 65 | 
             
                async def answer_rag(state,config):
         | 
| 66 | 
             
                    print("---- Answer RAG ----")
         | 
| 67 | 
             
                    start_time = time.time()
         | 
| 68 | 
            +
                    chat_history = state.get("chat_history",[])
         | 
| 69 | 
             
                    print("Sources used : " +  "\n".join([x.metadata["short_name"] + " - page " + str(x.metadata["page_number"])  for x in state["documents"]]))
         | 
| 70 |  | 
| 71 | 
             
                    answer = await rag_chain.ainvoke(state,config)
         | 
|  | |
| 74 | 
             
                    elapsed_time = end_time - start_time
         | 
| 75 | 
             
                    print("RAG elapsed time: ", elapsed_time)
         | 
| 76 | 
             
                    print("Answer size : ", len(answer))
         | 
|  | |
| 77 |  | 
| 78 | 
            +
                    chat_history.append({"question":state["query"],"answer":answer})
         | 
| 79 | 
            +
                    
         | 
| 80 | 
            +
                    return {"answer":answer,"chat_history": chat_history}
         | 
| 81 |  | 
| 82 | 
             
                return answer_rag
         | 
| 83 |  | 
    	
        climateqa/engine/chains/follow_up.py
    ADDED
    
    | @@ -0,0 +1,32 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import List
         | 
| 2 | 
            +
            from langchain.prompts import ChatPromptTemplate
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            FOLLOW_UP_TEMPLATE = """Based on the previous question and answer, generate 2-3 relevant follow-up questions that would help explore the topic further.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            Previous Question: {user_input}
         | 
| 8 | 
            +
            Previous Answer: {answer}
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            Generate short, concise, focused follow-up questions
         | 
| 11 | 
            +
            You don't need a full question as it will be reformulated later as a standalone question with the context. Eg. "Details the first point"
         | 
| 12 | 
            +
            """
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            def make_follow_up_node(llm):
         | 
| 15 | 
            +
                prompt = ChatPromptTemplate.from_template(FOLLOW_UP_TEMPLATE)
         | 
| 16 | 
            +
                
         | 
| 17 | 
            +
                def generate_follow_up(state):
         | 
| 18 | 
            +
                    if not state.get("answer"):
         | 
| 19 | 
            +
                        return state
         | 
| 20 | 
            +
                        
         | 
| 21 | 
            +
                    response = llm.invoke(prompt.format(
         | 
| 22 | 
            +
                        user_input=state["user_input"],
         | 
| 23 | 
            +
                        answer=state["answer"]
         | 
| 24 | 
            +
                    ))
         | 
| 25 | 
            +
                    
         | 
| 26 | 
            +
                    # Extract questions from response
         | 
| 27 | 
            +
                    follow_ups = [q.strip() for q in response.content.split("\n") if q.strip()]
         | 
| 28 | 
            +
                    state["follow_up_questions"] = follow_ups
         | 
| 29 | 
            +
                    
         | 
| 30 | 
            +
                    return state
         | 
| 31 | 
            +
                    
         | 
| 32 | 
            +
                return generate_follow_up
         | 
    	
        climateqa/engine/chains/retrieve_documents.py
    CHANGED
    
    | @@ -621,10 +621,7 @@ def make_IPx_retriever_node(vectorstore,reranker,llm,rerank_by_question=True, k_ | |
| 621 |  | 
| 622 | 
             
            def make_POC_retriever_node(vectorstore,reranker,llm,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5):
         | 
| 623 |  | 
| 624 | 
            -
                async def retrieve_POC_docs_node(state, config):
         | 
| 625 | 
            -
                    if "POC region" not in state["relevant_content_sources_selection"]  :  
         | 
| 626 | 
            -
                        return {}
         | 
| 627 | 
            -
                    
         | 
| 628 | 
             
                    source_type = "POC"
         | 
| 629 | 
             
                    POC_questions_index = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "POC"]
         | 
| 630 |  | 
| @@ -665,10 +662,7 @@ def make_POC_by_ToC_retriever_node( | |
| 665 | 
             
                    k_summary=5,
         | 
| 666 | 
             
                ):
         | 
| 667 |  | 
| 668 | 
            -
                async def retrieve_POC_docs_node(state, config):
         | 
| 669 | 
            -
                    if "POC region" not in state["relevant_content_sources_selection"]  :  
         | 
| 670 | 
            -
                        return {}
         | 
| 671 | 
            -
                    
         | 
| 672 | 
             
                    search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
         | 
| 673 | 
             
                    search_only = state["search_only"]
         | 
| 674 | 
             
                    search_only = state["search_only"]
         | 
|  | |
| 621 |  | 
| 622 | 
             
            def make_POC_retriever_node(vectorstore,reranker,llm,rerank_by_question=True, k_final=15, k_before_reranking=100, k_summary=5):
         | 
| 623 |  | 
| 624 | 
            +
                async def retrieve_POC_docs_node(state, config):        
         | 
|  | |
|  | |
|  | |
| 625 | 
             
                    source_type = "POC"
         | 
| 626 | 
             
                    POC_questions_index = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "POC"]
         | 
| 627 |  | 
|  | |
| 662 | 
             
                    k_summary=5,
         | 
| 663 | 
             
                ):
         | 
| 664 |  | 
| 665 | 
            +
                async def retrieve_POC_docs_node(state, config):     
         | 
|  | |
|  | |
|  | |
| 666 | 
             
                    search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
         | 
| 667 | 
             
                    search_only = state["search_only"]
         | 
| 668 | 
             
                    search_only = state["search_only"]
         | 
    	
        climateqa/engine/chains/standalone_question.py
    ADDED
    
    | @@ -0,0 +1,39 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from langchain.prompts import ChatPromptTemplate
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            def make_standalone_question_chain(llm):
         | 
| 4 | 
            +
                prompt = ChatPromptTemplate.from_messages([
         | 
| 5 | 
            +
                    ("system", """You are a helpful assistant that transforms user questions into standalone questions 
         | 
| 6 | 
            +
                    by incorporating context from the chat history if needed. The output should be a self-contained 
         | 
| 7 | 
            +
                    question that can be understood without any additional context.
         | 
| 8 | 
            +
                    
         | 
| 9 | 
            +
                    Examples:
         | 
| 10 | 
            +
                    Chat History: "Let's talk about renewable energy"
         | 
| 11 | 
            +
                    User Input: "What about solar?"
         | 
| 12 | 
            +
                    Output: "What are the key aspects of solar energy as a renewable energy source?"
         | 
| 13 | 
            +
                    
         | 
| 14 | 
            +
                    Chat History: "What causes global warming?"
         | 
| 15 | 
            +
                    User Input: "And what are its effects?"
         | 
| 16 | 
            +
                    Output: "What are the effects of global warming on the environment and society?"
         | 
| 17 | 
            +
                    """),
         | 
| 18 | 
            +
                    ("user", """Chat History: {chat_history}
         | 
| 19 | 
            +
                    User Question: {question}
         | 
| 20 | 
            +
                    
         | 
| 21 | 
            +
                    Transform this into a standalone question:""")
         | 
| 22 | 
            +
                ])
         | 
| 23 | 
            +
                
         | 
| 24 | 
            +
                chain = prompt | llm
         | 
| 25 | 
            +
                return chain
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            def make_standalone_question_node(llm):
         | 
| 28 | 
            +
                standalone_chain = make_standalone_question_chain(llm)
         | 
| 29 | 
            +
                
         | 
| 30 | 
            +
                def transform_to_standalone(state):
         | 
| 31 | 
            +
                    chat_history = state.get("chat_history", "")
         | 
| 32 | 
            +
                    output = standalone_chain.invoke({
         | 
| 33 | 
            +
                        "chat_history": chat_history,
         | 
| 34 | 
            +
                        "question": state["user_input"]
         | 
| 35 | 
            +
                    })
         | 
| 36 | 
            +
                    state["user_input"] = output.content
         | 
| 37 | 
            +
                    return state
         | 
| 38 | 
            +
                    
         | 
| 39 | 
            +
                return transform_to_standalone
         | 
    	
        climateqa/engine/graph.py
    CHANGED
    
    | @@ -23,13 +23,15 @@ from .chains.retrieve_documents import make_IPx_retriever_node, make_POC_retriev | |
| 23 | 
             
            from .chains.answer_rag import make_rag_node
         | 
| 24 | 
             
            from .chains.graph_retriever import make_graph_retriever_node
         | 
| 25 | 
             
            from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
         | 
| 26 | 
            -
             | 
|  | |
| 27 |  | 
| 28 | 
             
            class GraphState(TypedDict):
         | 
| 29 | 
             
                """
         | 
| 30 | 
             
                Represents the state of our graph.
         | 
| 31 | 
             
                """
         | 
| 32 | 
             
                user_input : str
         | 
|  | |
| 33 | 
             
                language : str
         | 
| 34 | 
             
                intent : str
         | 
| 35 | 
             
                search_graphs_chitchat : bool
         | 
| @@ -49,6 +51,7 @@ class GraphState(TypedDict): | |
| 49 | 
             
                recommended_content : List[Document] # OWID Graphs  # TODO merge with related_contents
         | 
| 50 | 
             
                search_only : bool = False
         | 
| 51 | 
             
                reports : List[str] = []
         | 
|  | |
| 52 |  | 
| 53 | 
             
            def dummy(state):
         | 
| 54 | 
             
                return 
         | 
| @@ -100,15 +103,6 @@ def route_continue_retrieve_documents(state): | |
| 100 | 
             
                else:
         | 
| 101 | 
             
                    return "retrieve_documents"
         | 
| 102 |  | 
| 103 | 
            -
            def route_continue_retrieve_local_documents(state):
         | 
| 104 | 
            -
                index_question_poc = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "POC"]
         | 
| 105 | 
            -
                questions_poc_finished = all(elem in state["handled_questions_index"] for elem in index_question_poc)
         | 
| 106 | 
            -
                # if questions_poc_finished and state["search_only"]:
         | 
| 107 | 
            -
                #     return END
         | 
| 108 | 
            -
                if questions_poc_finished or ("POC region" not in state["relevant_content_sources_selection"]):
         | 
| 109 | 
            -
                    return "end_retrieve_local_documents"
         | 
| 110 | 
            -
                else:
         | 
| 111 | 
            -
                    return "retrieve_local_data"
         | 
| 112 |  | 
| 113 | 
             
            def route_retrieve_documents(state):
         | 
| 114 | 
             
                sources_to_retrieve = []
         | 
| @@ -120,6 +114,11 @@ def route_retrieve_documents(state): | |
| 120 | 
             
                    return END
         | 
| 121 | 
             
                return sources_to_retrieve
         | 
| 122 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 123 | 
             
            def make_id_dict(values):
         | 
| 124 | 
             
                return {k:k for k in values}
         | 
| 125 |  | 
| @@ -128,6 +127,7 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi | |
| 128 | 
             
                workflow = StateGraph(GraphState)
         | 
| 129 |  | 
| 130 | 
             
                # Define the node functions
         | 
|  | |
| 131 | 
             
                categorize_intent = make_intent_categorization_node(llm)
         | 
| 132 | 
             
                transform_query = make_query_transform_node(llm)
         | 
| 133 | 
             
                translate_query = make_translation_node(llm)
         | 
| @@ -139,9 +139,11 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi | |
| 139 | 
             
                answer_rag = make_rag_node(llm, with_docs=True)
         | 
| 140 | 
             
                answer_rag_no_docs = make_rag_node(llm, with_docs=False)
         | 
| 141 | 
             
                chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
         | 
|  | |
| 142 |  | 
| 143 | 
             
                # Define the nodes
         | 
| 144 | 
             
                # workflow.add_node("set_defaults", set_defaults)
         | 
|  | |
| 145 | 
             
                workflow.add_node("categorize_intent", categorize_intent)
         | 
| 146 | 
             
                workflow.add_node("answer_climate", dummy)
         | 
| 147 | 
             
                workflow.add_node("answer_search", answer_search)
         | 
| @@ -155,9 +157,11 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi | |
| 155 | 
             
                workflow.add_node("retrieve_documents", retrieve_documents)
         | 
| 156 | 
             
                workflow.add_node("answer_rag", answer_rag)
         | 
| 157 | 
             
                workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
         | 
|  | |
|  | |
| 158 |  | 
| 159 | 
             
                # Entry point
         | 
| 160 | 
            -
                workflow.set_entry_point(" | 
| 161 |  | 
| 162 | 
             
                # CONDITIONAL EDGES
         | 
| 163 | 
             
                workflow.add_conditional_edges(
         | 
| @@ -189,20 +193,29 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_regi | |
| 189 | 
             
                    make_id_dict(["retrieve_graphs", END])
         | 
| 190 | 
             
                )
         | 
| 191 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 192 | 
             
                # Define the edges
         | 
|  | |
| 193 | 
             
                workflow.add_edge("translate_query", "transform_query")
         | 
| 194 | 
             
                workflow.add_edge("transform_query", "retrieve_documents") #TODO put back
         | 
| 195 | 
             
                # workflow.add_edge("transform_query", "retrieve_local_data")
         | 
| 196 | 
             
                # workflow.add_edge("transform_query", END) # TODO remove
         | 
| 197 |  | 
| 198 | 
             
                workflow.add_edge("retrieve_graphs", END)
         | 
| 199 | 
            -
                workflow.add_edge("answer_rag",  | 
| 200 | 
            -
                workflow.add_edge("answer_rag_no_docs",  | 
| 201 | 
             
                workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
         | 
| 202 | 
             
                workflow.add_edge("retrieve_graphs_chitchat", END)
         | 
| 203 |  | 
| 204 | 
             
                # workflow.add_edge("retrieve_local_data", "answer_search")
         | 
| 205 | 
             
                workflow.add_edge("retrieve_documents", "answer_search")
         | 
|  | |
|  | |
| 206 |  | 
| 207 | 
             
                # Compile
         | 
| 208 | 
             
                app = workflow.compile()
         | 
| @@ -228,6 +241,8 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_ | |
| 228 | 
             
                workflow = StateGraph(GraphState)
         | 
| 229 |  | 
| 230 | 
             
                # Define the node functions
         | 
|  | |
|  | |
| 231 | 
             
                categorize_intent = make_intent_categorization_node(llm)
         | 
| 232 | 
             
                transform_query = make_query_transform_node(llm)
         | 
| 233 | 
             
                translate_query = make_translation_node(llm)
         | 
| @@ -240,9 +255,11 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_ | |
| 240 | 
             
                answer_rag = make_rag_node(llm, with_docs=True)
         | 
| 241 | 
             
                answer_rag_no_docs = make_rag_node(llm, with_docs=False)
         | 
| 242 | 
             
                chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
         | 
|  | |
| 243 |  | 
| 244 | 
             
                # Define the nodes
         | 
| 245 | 
             
                # workflow.add_node("set_defaults", set_defaults)
         | 
|  | |
| 246 | 
             
                workflow.add_node("categorize_intent", categorize_intent)
         | 
| 247 | 
             
                workflow.add_node("answer_climate", dummy)
         | 
| 248 | 
             
                workflow.add_node("answer_search", answer_search)
         | 
| @@ -258,9 +275,10 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_ | |
| 258 | 
             
                workflow.add_node("retrieve_documents", retrieve_documents)
         | 
| 259 | 
             
                workflow.add_node("answer_rag", answer_rag)
         | 
| 260 | 
             
                workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
         | 
|  | |
| 261 |  | 
| 262 | 
             
                # Entry point
         | 
| 263 | 
            -
                workflow.set_entry_point(" | 
| 264 |  | 
| 265 | 
             
                # CONDITIONAL EDGES
         | 
| 266 | 
             
                workflow.add_conditional_edges(
         | 
| @@ -293,22 +311,21 @@ def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_ | |
| 293 | 
             
                )
         | 
| 294 |  | 
| 295 | 
             
                # Define the edges
         | 
|  | |
| 296 | 
             
                workflow.add_edge("translate_query", "transform_query")
         | 
| 297 | 
             
                workflow.add_edge("transform_query", "retrieve_documents") #TODO put back
         | 
| 298 | 
             
                workflow.add_edge("transform_query", "retrieve_local_data")
         | 
| 299 | 
             
                # workflow.add_edge("transform_query", END) # TODO remove
         | 
| 300 |  | 
| 301 | 
             
                workflow.add_edge("retrieve_graphs", END)
         | 
| 302 | 
            -
                workflow.add_edge("answer_rag",  | 
| 303 | 
            -
                workflow.add_edge("answer_rag_no_docs",  | 
| 304 | 
             
                workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
         | 
| 305 | 
             
                workflow.add_edge("retrieve_graphs_chitchat", END)
         | 
| 306 |  | 
| 307 | 
             
                workflow.add_edge("retrieve_local_data", "answer_search")
         | 
| 308 | 
             
                workflow.add_edge("retrieve_documents", "answer_search")
         | 
| 309 | 
            -
             | 
| 310 | 
            -
                # workflow.add_edge("transform_query", "retrieve_drias_data")
         | 
| 311 | 
            -
                # workflow.add_edge("retrieve_drias_data", END)
         | 
| 312 |  | 
| 313 |  | 
| 314 | 
             
                # Compile
         | 
|  | |
| 23 | 
             
            from .chains.answer_rag import make_rag_node
         | 
| 24 | 
             
            from .chains.graph_retriever import make_graph_retriever_node
         | 
| 25 | 
             
            from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
         | 
| 26 | 
            +
            from .chains.standalone_question import make_standalone_question_node
         | 
| 27 | 
            +
            from .chains.follow_up import make_follow_up_node  # Add this import
         | 
| 28 |  | 
| 29 | 
             
            class GraphState(TypedDict):
         | 
| 30 | 
             
                """
         | 
| 31 | 
             
                Represents the state of our graph.
         | 
| 32 | 
             
                """
         | 
| 33 | 
             
                user_input : str
         | 
| 34 | 
            +
                chat_history : str
         | 
| 35 | 
             
                language : str
         | 
| 36 | 
             
                intent : str
         | 
| 37 | 
             
                search_graphs_chitchat : bool
         | 
|  | |
| 51 | 
             
                recommended_content : List[Document] # OWID Graphs  # TODO merge with related_contents
         | 
| 52 | 
             
                search_only : bool = False
         | 
| 53 | 
             
                reports : List[str] = []
         | 
| 54 | 
            +
                follow_up_questions: List[str] = []
         | 
| 55 |  | 
| 56 | 
             
            def dummy(state):
         | 
| 57 | 
             
                return 
         | 
|  | |
| 103 | 
             
                else:
         | 
| 104 | 
             
                    return "retrieve_documents"
         | 
| 105 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 106 |  | 
| 107 | 
             
            def route_retrieve_documents(state):
         | 
| 108 | 
             
                sources_to_retrieve = []
         | 
|  | |
| 114 | 
             
                    return END
         | 
| 115 | 
             
                return sources_to_retrieve
         | 
| 116 |  | 
| 117 | 
            +
            def route_follow_up(state):
         | 
| 118 | 
            +
                if state["follow_up_questions"]:
         | 
| 119 | 
            +
                    return "process_follow_up"
         | 
| 120 | 
            +
                return END
         | 
| 121 | 
            +
             | 
| 122 | 
             
            def make_id_dict(values):
         | 
| 123 | 
             
                return {k:k for k in values}
         | 
| 124 |  | 
|  | |
| 127 | 
             
                workflow = StateGraph(GraphState)
         | 
| 128 |  | 
| 129 | 
             
                # Define the node functions
         | 
| 130 | 
            +
                standalone_question_node = make_standalone_question_node(llm)
         | 
| 131 | 
             
                categorize_intent = make_intent_categorization_node(llm)
         | 
| 132 | 
             
                transform_query = make_query_transform_node(llm)
         | 
| 133 | 
             
                translate_query = make_translation_node(llm)
         | 
|  | |
| 139 | 
             
                answer_rag = make_rag_node(llm, with_docs=True)
         | 
| 140 | 
             
                answer_rag_no_docs = make_rag_node(llm, with_docs=False)
         | 
| 141 | 
             
                chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
         | 
| 142 | 
            +
                generate_follow_up = make_follow_up_node(llm)
         | 
| 143 |  | 
| 144 | 
             
                # Define the nodes
         | 
| 145 | 
             
                # workflow.add_node("set_defaults", set_defaults)
         | 
| 146 | 
            +
                workflow.add_node("standalone_question", standalone_question_node)
         | 
| 147 | 
             
                workflow.add_node("categorize_intent", categorize_intent)
         | 
| 148 | 
             
                workflow.add_node("answer_climate", dummy)
         | 
| 149 | 
             
                workflow.add_node("answer_search", answer_search)
         | 
|  | |
| 157 | 
             
                workflow.add_node("retrieve_documents", retrieve_documents)
         | 
| 158 | 
             
                workflow.add_node("answer_rag", answer_rag)
         | 
| 159 | 
             
                workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
         | 
| 160 | 
            +
                workflow.add_node("generate_follow_up", generate_follow_up)
         | 
| 161 | 
            +
                # workflow.add_node("process_follow_up", standalone_question_node)
         | 
| 162 |  | 
| 163 | 
             
                # Entry point
         | 
| 164 | 
            +
                workflow.set_entry_point("standalone_question")
         | 
| 165 |  | 
| 166 | 
             
                # CONDITIONAL EDGES
         | 
| 167 | 
             
                workflow.add_conditional_edges(
         | 
|  | |
| 193 | 
             
                    make_id_dict(["retrieve_graphs", END])
         | 
| 194 | 
             
                )
         | 
| 195 |  | 
| 196 | 
            +
                # workflow.add_conditional_edges(
         | 
| 197 | 
            +
                #     "generate_follow_up",
         | 
| 198 | 
            +
                #     route_follow_up,
         | 
| 199 | 
            +
                #     make_id_dict(["process_follow_up", END])
         | 
| 200 | 
            +
                # )
         | 
| 201 | 
            +
             | 
| 202 | 
             
                # Define the edges
         | 
| 203 | 
            +
                workflow.add_edge("standalone_question", "categorize_intent")
         | 
| 204 | 
             
                workflow.add_edge("translate_query", "transform_query")
         | 
| 205 | 
             
                workflow.add_edge("transform_query", "retrieve_documents") #TODO put back
         | 
| 206 | 
             
                # workflow.add_edge("transform_query", "retrieve_local_data")
         | 
| 207 | 
             
                # workflow.add_edge("transform_query", END) # TODO remove
         | 
| 208 |  | 
| 209 | 
             
                workflow.add_edge("retrieve_graphs", END)
         | 
| 210 | 
            +
                workflow.add_edge("answer_rag", "generate_follow_up")
         | 
| 211 | 
            +
                workflow.add_edge("answer_rag_no_docs", "generate_follow_up")
         | 
| 212 | 
             
                workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
         | 
| 213 | 
             
                workflow.add_edge("retrieve_graphs_chitchat", END)
         | 
| 214 |  | 
| 215 | 
             
                # workflow.add_edge("retrieve_local_data", "answer_search")
         | 
| 216 | 
             
                workflow.add_edge("retrieve_documents", "answer_search")
         | 
| 217 | 
            +
                workflow.add_edge("generate_follow_up",END)
         | 
| 218 | 
            +
                # workflow.add_edge("process_follow_up", "categorize_intent")
         | 
| 219 |  | 
| 220 | 
             
                # Compile
         | 
| 221 | 
             
                app = workflow.compile()
         | 
|  | |
| 241 | 
             
                workflow = StateGraph(GraphState)
         | 
| 242 |  | 
| 243 | 
             
                # Define the node functions
         | 
| 244 | 
            +
                standalone_question_node = make_standalone_question_node(llm)
         | 
| 245 | 
            +
             | 
| 246 | 
             
                categorize_intent = make_intent_categorization_node(llm)
         | 
| 247 | 
             
                transform_query = make_query_transform_node(llm)
         | 
| 248 | 
             
                translate_query = make_translation_node(llm)
         | 
|  | |
| 255 | 
             
                answer_rag = make_rag_node(llm, with_docs=True)
         | 
| 256 | 
             
                answer_rag_no_docs = make_rag_node(llm, with_docs=False)
         | 
| 257 | 
             
                chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
         | 
| 258 | 
            +
                generate_follow_up = make_follow_up_node(llm)
         | 
| 259 |  | 
| 260 | 
             
                # Define the nodes
         | 
| 261 | 
             
                # workflow.add_node("set_defaults", set_defaults)
         | 
| 262 | 
            +
                workflow.add_node("standalone_question", standalone_question_node)
         | 
| 263 | 
             
                workflow.add_node("categorize_intent", categorize_intent)
         | 
| 264 | 
             
                workflow.add_node("answer_climate", dummy)
         | 
| 265 | 
             
                workflow.add_node("answer_search", answer_search)
         | 
|  | |
| 275 | 
             
                workflow.add_node("retrieve_documents", retrieve_documents)
         | 
| 276 | 
             
                workflow.add_node("answer_rag", answer_rag)
         | 
| 277 | 
             
                workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
         | 
| 278 | 
            +
                workflow.add_node("generate_follow_up", generate_follow_up)
         | 
| 279 |  | 
| 280 | 
             
                # Entry point
         | 
| 281 | 
            +
                workflow.set_entry_point("standalone_question")
         | 
| 282 |  | 
| 283 | 
             
                # CONDITIONAL EDGES
         | 
| 284 | 
             
                workflow.add_conditional_edges(
         | 
|  | |
| 311 | 
             
                )
         | 
| 312 |  | 
| 313 | 
             
                # Define the edges
         | 
| 314 | 
            +
                workflow.add_edge("standalone_question", "categorize_intent")
         | 
| 315 | 
             
                workflow.add_edge("translate_query", "transform_query")
         | 
| 316 | 
             
                workflow.add_edge("transform_query", "retrieve_documents") #TODO put back
         | 
| 317 | 
             
                workflow.add_edge("transform_query", "retrieve_local_data")
         | 
| 318 | 
             
                # workflow.add_edge("transform_query", END) # TODO remove
         | 
| 319 |  | 
| 320 | 
             
                workflow.add_edge("retrieve_graphs", END)
         | 
| 321 | 
            +
                workflow.add_edge("answer_rag", "generate_follow_up")
         | 
| 322 | 
            +
                workflow.add_edge("answer_rag_no_docs", "generate_follow_up")
         | 
| 323 | 
             
                workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
         | 
| 324 | 
             
                workflow.add_edge("retrieve_graphs_chitchat", END)
         | 
| 325 |  | 
| 326 | 
             
                workflow.add_edge("retrieve_local_data", "answer_search")
         | 
| 327 | 
             
                workflow.add_edge("retrieve_documents", "answer_search")
         | 
| 328 | 
            +
                workflow.add_edge("generate_follow_up",END)
         | 
|  | |
|  | |
| 329 |  | 
| 330 |  | 
| 331 | 
             
                # Compile
         | 
    	
        front/tabs/__init__.py
    CHANGED
    
    | @@ -3,4 +3,7 @@ from .tab_examples import create_examples_tab | |
| 3 | 
             
            from .tab_papers import create_papers_tab
         | 
| 4 | 
             
            from .tab_figures import create_figures_tab
         | 
| 5 | 
             
            from .chat_interface import create_chat_interface
         | 
| 6 | 
            -
            from .tab_about import create_about_tab
         | 
|  | |
|  | |
|  | 
|  | |
| 3 | 
             
            from .tab_papers import create_papers_tab
         | 
| 4 | 
             
            from .tab_figures import create_figures_tab
         | 
| 5 | 
             
            from .chat_interface import create_chat_interface
         | 
| 6 | 
            +
            from .tab_about import create_about_tab
         | 
| 7 | 
            +
            from .main_tab import MainTabPanel
         | 
| 8 | 
            +
            from .tab_config import ConfigPanel
         | 
| 9 | 
            +
            from .main_tab import cqa_tab
         | 
    	
        front/tabs/chat_interface.py
    CHANGED
    
    | @@ -21,21 +21,21 @@ What do you want to learn ? | |
| 21 | 
             
            """
         | 
| 22 |  | 
| 23 | 
             
            init_prompt_poc = """
         | 
| 24 | 
            -
             | 
| 25 |  | 
| 26 | 
            -
            ❓  | 
| 27 | 
            -
            - **Language | 
| 28 | 
            -
            - **Audience | 
| 29 | 
            -
            - **Sources | 
| 30 | 
            -
            - **Relevant content sources | 
| 31 |  | 
| 32 | 
             
            ⚠️ Limitations
         | 
| 33 | 
            -
            * | 
| 34 |  | 
| 35 | 
            -
            🛈  | 
| 36 | 
            -
             | 
| 37 |  | 
| 38 | 
            -
             | 
| 39 | 
             
            """
         | 
| 40 |  | 
| 41 |  | 
| @@ -54,7 +54,10 @@ def create_chat_interface(tab): | |
| 54 | 
             
                    max_height="80vh",
         | 
| 55 | 
             
                    height="100vh"
         | 
| 56 | 
             
                )
         | 
| 57 | 
            -
                
         | 
|  | |
|  | |
|  | |
| 58 | 
             
                with gr.Row(elem_id="input-message"):
         | 
| 59 |  | 
| 60 | 
             
                    textbox = gr.Textbox(
         | 
| @@ -68,7 +71,7 @@ def create_chat_interface(tab): | |
| 68 |  | 
| 69 | 
             
                    config_button = gr.Button("", elem_id="config-button")
         | 
| 70 |  | 
| 71 | 
            -
                return chatbot, textbox, config_button
         | 
| 72 |  | 
| 73 |  | 
| 74 |  | 
|  | |
| 21 | 
             
            """
         | 
| 22 |  | 
| 23 | 
             
            init_prompt_poc = """
         | 
| 24 | 
            +
            Bonjour, je suis ClimateQ&A, un assistant conversationnel conçu pour vous aider à comprendre le changement climatique et la perte de biodiversité. Je réponds à vos questions en **parcourant les rapports scientifiques du GIEC et de l'IPBES, le PCAET de Paris, le Plan Biodiversité 2018-2024, et les rapports Acclimaterra de la Région Nouvelle-Aquitaine**.
         | 
| 25 |  | 
| 26 | 
            +
            ❓ Mode d'emploi
         | 
| 27 | 
            +
            - **Language** : Vous pouvez me poser vos questions dans n'importe quelle langue. 
         | 
| 28 | 
            +
            - **Audience** : Vous pouvez préciser votre public (enfants, grand public, experts) pour obtenir une réponse plus adaptée.
         | 
| 29 | 
            +
            - **Sources** : Vous pouvez choisir de chercher dans les rapports du GIEC ou de l'IPBES, et dans les sources POC pour les documents locaux (PCAET, Plan Biodiversité, Acclimaterra).
         | 
| 30 | 
            +
            - **Relevant content sources** : Vous pouvez choisir de rechercher des images, des papiers scientifiques ou des graphiques qui peuvent être pertinents pour votre question.
         | 
| 31 |  | 
| 32 | 
             
            ⚠️ Limitations
         | 
| 33 | 
            +
            *Veuillez noter que l'IA n'est pas parfaite et peut parfois donner des réponses non pertinentes. Si vous n'êtes pas satisfait de la réponse, veuillez poser une question plus précise ou nous faire part de vos commentaires pour nous aider à améliorer le système.*
         | 
| 34 |  | 
| 35 | 
            +
            🛈 Informations
         | 
| 36 | 
            +
            Veuillez noter que nous enregistrons vos questions à des fins de méta-analyse, évitez donc de partager toute information sensible ou personnelle.
         | 
| 37 |  | 
| 38 | 
            +
            Que voulez-vous apprendre ?
         | 
| 39 | 
             
            """
         | 
| 40 |  | 
| 41 |  | 
|  | |
| 54 | 
             
                    max_height="80vh",
         | 
| 55 | 
             
                    height="100vh"
         | 
| 56 | 
             
                )
         | 
| 57 | 
            +
                with gr.Row(elem_id="follow-up-examples"):
         | 
| 58 | 
            +
                    follow_up_examples_hidden = gr.Textbox(visible=False, elem_id="follow-up-hidden")
         | 
| 59 | 
            +
                    follow_up_examples = gr.Examples(examples=[ ], label="Follow up questions", inputs= [follow_up_examples_hidden], elem_id="follow-up-button", run_on_click=False)
         | 
| 60 | 
            +
             | 
| 61 | 
             
                with gr.Row(elem_id="input-message"):
         | 
| 62 |  | 
| 63 | 
             
                    textbox = gr.Textbox(
         | 
|  | |
| 71 |  | 
| 72 | 
             
                    config_button = gr.Button("", elem_id="config-button")
         | 
| 73 |  | 
| 74 | 
            +
                return chatbot, textbox, config_button, follow_up_examples, follow_up_examples_hidden
         | 
| 75 |  | 
| 76 |  | 
| 77 |  | 
    	
        front/tabs/main_tab.py
    CHANGED
    
    | @@ -1,8 +1,37 @@ | |
| 1 | 
             
            import gradio as gr
         | 
|  | |
|  | |
| 2 | 
             
            from .chat_interface import create_chat_interface
         | 
| 3 | 
             
            from .tab_examples import create_examples_tab
         | 
| 4 | 
             
            from .tab_papers import create_papers_tab
         | 
| 5 | 
             
            from .tab_figures import create_figures_tab
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 6 |  | 
| 7 | 
             
            def cqa_tab(tab_name):
         | 
| 8 | 
             
                # State variables
         | 
| @@ -11,14 +40,14 @@ def cqa_tab(tab_name): | |
| 11 | 
             
                    with gr.Row(elem_id="chatbot-row"):
         | 
| 12 | 
             
                        # Left column - Chat interface
         | 
| 13 | 
             
                        with gr.Column(scale=2):
         | 
| 14 | 
            -
                            chatbot, textbox, config_button = create_chat_interface(tab_name)
         | 
| 15 |  | 
| 16 | 
             
                        # Right column - Content panels
         | 
| 17 | 
             
                        with gr.Column(scale=2, variant="panel", elem_id="right-panel"):
         | 
| 18 | 
             
                            with gr.Tabs(elem_id="right_panel_tab") as tabs:
         | 
| 19 | 
             
                                # Examples tab
         | 
| 20 | 
             
                                with gr.TabItem("Examples", elem_id="tab-examples", id=0):
         | 
| 21 | 
            -
                                    examples_hidden | 
| 22 |  | 
| 23 | 
             
                                # Sources tab
         | 
| 24 | 
             
                                with gr.Tab("Sources", elem_id="tab-sources", id=1) as tab_sources:
         | 
| @@ -34,7 +63,7 @@ def cqa_tab(tab_name): | |
| 34 |  | 
| 35 | 
             
                                        # Papers subtab
         | 
| 36 | 
             
                                        with gr.Tab("Papers", elem_id="tab-citations", id=4) as tab_papers:
         | 
| 37 | 
            -
                                            papers_summary, papers_html, citations_network, papers_modal = create_papers_tab()
         | 
| 38 |  | 
| 39 | 
             
                                        # Graphs subtab
         | 
| 40 | 
             
                                        with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
         | 
| @@ -42,27 +71,30 @@ def cqa_tab(tab_name): | |
| 42 | 
             
                                                "<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",
         | 
| 43 | 
             
                                                elem_id="graphs-container"
         | 
| 44 | 
             
                                            )
         | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
                     | 
| 49 | 
            -
                     | 
| 50 | 
            -
                     | 
| 51 | 
            -
                     | 
| 52 | 
            -
                     | 
| 53 | 
            -
                     | 
| 54 | 
            -
                     | 
| 55 | 
            -
                     | 
| 56 | 
            -
                     | 
| 57 | 
            -
                     | 
| 58 | 
            -
                     | 
| 59 | 
            -
                     | 
| 60 | 
            -
                     | 
| 61 | 
            -
                     | 
| 62 | 
            -
                     | 
| 63 | 
            -
                     | 
| 64 | 
            -
                     | 
| 65 | 
            -
                     | 
| 66 | 
            -
                     | 
| 67 | 
            -
                     | 
| 68 | 
            -
             | 
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            +
            from gradio.helpers import Examples
         | 
| 3 | 
            +
            from typing import TypedDict
         | 
| 4 | 
             
            from .chat_interface import create_chat_interface
         | 
| 5 | 
             
            from .tab_examples import create_examples_tab
         | 
| 6 | 
             
            from .tab_papers import create_papers_tab
         | 
| 7 | 
             
            from .tab_figures import create_figures_tab
         | 
| 8 | 
            +
            from dataclasses import dataclass
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            @dataclass
         | 
| 11 | 
            +
            class MainTabPanel:
         | 
| 12 | 
            +
                chatbot: gr.Chatbot
         | 
| 13 | 
            +
                textbox: gr.Textbox
         | 
| 14 | 
            +
                tabs: gr.Tabs
         | 
| 15 | 
            +
                sources_raw: gr.State
         | 
| 16 | 
            +
                new_figures: gr.State
         | 
| 17 | 
            +
                current_graphs: gr.State
         | 
| 18 | 
            +
                examples_hidden: gr.State
         | 
| 19 | 
            +
                sources_textbox: gr.HTML
         | 
| 20 | 
            +
                figures_cards: gr.HTML
         | 
| 21 | 
            +
                gallery_component: gr.Gallery
         | 
| 22 | 
            +
                config_button: gr.Button
         | 
| 23 | 
            +
                papers_direct_search: gr.TextArea
         | 
| 24 | 
            +
                papers_html: gr.HTML
         | 
| 25 | 
            +
                citations_network: gr.Plot
         | 
| 26 | 
            +
                papers_summary: gr.Textbox
         | 
| 27 | 
            +
                tab_recommended_content: gr.Tab
         | 
| 28 | 
            +
                tab_sources: gr.Tab
         | 
| 29 | 
            +
                tab_figures: gr.Tab
         | 
| 30 | 
            +
                tab_graphs: gr.Tab
         | 
| 31 | 
            +
                tab_papers: gr.Tab
         | 
| 32 | 
            +
                graph_container: gr.HTML
         | 
| 33 | 
            +
                follow_up_examples : Examples
         | 
| 34 | 
            +
                follow_up_examples_hidden : gr.Textbox
         | 
| 35 |  | 
| 36 | 
             
            def cqa_tab(tab_name):
         | 
| 37 | 
             
                # State variables
         | 
|  | |
| 40 | 
             
                    with gr.Row(elem_id="chatbot-row"):
         | 
| 41 | 
             
                        # Left column - Chat interface
         | 
| 42 | 
             
                        with gr.Column(scale=2):
         | 
| 43 | 
            +
                            chatbot, textbox, config_button, follow_up_examples, follow_up_examples_hidden = create_chat_interface(tab_name)
         | 
| 44 |  | 
| 45 | 
             
                        # Right column - Content panels
         | 
| 46 | 
             
                        with gr.Column(scale=2, variant="panel", elem_id="right-panel"):
         | 
| 47 | 
             
                            with gr.Tabs(elem_id="right_panel_tab") as tabs:
         | 
| 48 | 
             
                                # Examples tab
         | 
| 49 | 
             
                                with gr.TabItem("Examples", elem_id="tab-examples", id=0):
         | 
| 50 | 
            +
                                    examples_hidden = create_examples_tab(tab_name)
         | 
| 51 |  | 
| 52 | 
             
                                # Sources tab
         | 
| 53 | 
             
                                with gr.Tab("Sources", elem_id="tab-sources", id=1) as tab_sources:
         | 
|  | |
| 63 |  | 
| 64 | 
             
                                        # Papers subtab
         | 
| 65 | 
             
                                        with gr.Tab("Papers", elem_id="tab-citations", id=4) as tab_papers:
         | 
| 66 | 
            +
                                            papers_direct_search, papers_summary, papers_html, citations_network, papers_modal = create_papers_tab()
         | 
| 67 |  | 
| 68 | 
             
                                        # Graphs subtab
         | 
| 69 | 
             
                                        with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
         | 
|  | |
| 71 | 
             
                                                "<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",
         | 
| 72 | 
             
                                                elem_id="graphs-container"
         | 
| 73 | 
             
                                            )
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                                            
         | 
| 76 | 
            +
                return MainTabPanel(
         | 
| 77 | 
            +
                    chatbot=chatbot,
         | 
| 78 | 
            +
                    textbox=textbox,
         | 
| 79 | 
            +
                    tabs=tabs,
         | 
| 80 | 
            +
                    sources_raw=sources_raw,
         | 
| 81 | 
            +
                    new_figures=new_figures,
         | 
| 82 | 
            +
                    current_graphs=current_graphs,
         | 
| 83 | 
            +
                    examples_hidden=examples_hidden,
         | 
| 84 | 
            +
                    sources_textbox=sources_textbox,
         | 
| 85 | 
            +
                    figures_cards=figures_cards,
         | 
| 86 | 
            +
                    gallery_component=gallery_component,
         | 
| 87 | 
            +
                    config_button=config_button,
         | 
| 88 | 
            +
                    papers_direct_search=papers_direct_search,
         | 
| 89 | 
            +
                    papers_html=papers_html,
         | 
| 90 | 
            +
                    citations_network=citations_network,
         | 
| 91 | 
            +
                    papers_summary=papers_summary,
         | 
| 92 | 
            +
                    tab_recommended_content=tab_recommended_content,
         | 
| 93 | 
            +
                    tab_sources=tab_sources,
         | 
| 94 | 
            +
                    tab_figures=tab_figures,
         | 
| 95 | 
            +
                    tab_graphs=tab_graphs,
         | 
| 96 | 
            +
                    tab_papers=tab_papers,
         | 
| 97 | 
            +
                    graph_container=graphs_container,
         | 
| 98 | 
            +
                    follow_up_examples= follow_up_examples,
         | 
| 99 | 
            +
                    follow_up_examples_hidden = follow_up_examples_hidden
         | 
| 100 | 
            +
                )
         | 
    	
        front/tabs/tab_config.py
    CHANGED
    
    | @@ -2,8 +2,10 @@ import gradio as gr | |
| 2 | 
             
            from gradio_modal import Modal
         | 
| 3 | 
             
            from climateqa.constants import POSSIBLE_REPORTS
         | 
| 4 | 
             
            from typing import TypedDict
         | 
|  | |
| 5 |  | 
| 6 | 
            -
             | 
|  | |
| 7 | 
             
                config_open: gr.State
         | 
| 8 | 
             
                config_modal: Modal
         | 
| 9 | 
             
                dropdown_sources: gr.CheckboxGroup
         | 
| @@ -14,6 +16,7 @@ class ConfigPanel(TypedDict): | |
| 14 | 
             
                after: gr.Slider
         | 
| 15 | 
             
                output_query: gr.Textbox
         | 
| 16 | 
             
                output_language: gr.Textbox
         | 
|  | |
| 17 |  | 
| 18 |  | 
| 19 | 
             
            def create_config_modal():
         | 
| @@ -37,9 +40,9 @@ def create_config_modal(): | |
| 37 | 
             
                    )
         | 
| 38 |  | 
| 39 | 
             
                    dropdown_external_sources = gr.CheckboxGroup(
         | 
| 40 | 
            -
                        choices=["Figures (IPCC/IPBES)", "Papers (OpenAlex)", "Graphs (OurWorldInData)" | 
| 41 | 
             
                        label="Select database to search for relevant content",
         | 
| 42 | 
            -
                        value=["Figures (IPCC/IPBES)" | 
| 43 | 
             
                        interactive=True
         | 
| 44 | 
             
                    )
         | 
| 45 |  | 
| @@ -95,29 +98,16 @@ def create_config_modal(): | |
| 95 |  | 
| 96 | 
             
                    close_config_modal_button = gr.Button("Validate and Close", elem_id="close-config-modal")
         | 
| 97 |  | 
| 98 | 
            -
                    
         | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
             | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
                     | 
| 111 | 
            -
                    return {
         | 
| 112 | 
            -
                        "config_open" : config_open,
         | 
| 113 | 
            -
                        "config_modal": config_modal,
         | 
| 114 | 
            -
                        "dropdown_sources": dropdown_sources,
         | 
| 115 | 
            -
                        "dropdown_reports": dropdown_reports,
         | 
| 116 | 
            -
                        "dropdown_external_sources": dropdown_external_sources,
         | 
| 117 | 
            -
                        "search_only": search_only,
         | 
| 118 | 
            -
                        "dropdown_audience": dropdown_audience,
         | 
| 119 | 
            -
                        "after": after,
         | 
| 120 | 
            -
                        "output_query": output_query,
         | 
| 121 | 
            -
                        "output_language": output_language,
         | 
| 122 | 
            -
                        "close_config_modal_button": close_config_modal_button
         | 
| 123 | 
            -
                    }
         | 
|  | |
| 2 | 
             
            from gradio_modal import Modal
         | 
| 3 | 
             
            from climateqa.constants import POSSIBLE_REPORTS
         | 
| 4 | 
             
            from typing import TypedDict
         | 
| 5 | 
            +
            from dataclasses import dataclass
         | 
| 6 |  | 
| 7 | 
            +
            @dataclass
         | 
| 8 | 
            +
            class ConfigPanel:
         | 
| 9 | 
             
                config_open: gr.State
         | 
| 10 | 
             
                config_modal: Modal
         | 
| 11 | 
             
                dropdown_sources: gr.CheckboxGroup
         | 
|  | |
| 16 | 
             
                after: gr.Slider
         | 
| 17 | 
             
                output_query: gr.Textbox
         | 
| 18 | 
             
                output_language: gr.Textbox
         | 
| 19 | 
            +
                close_config_modal_button: gr.Button
         | 
| 20 |  | 
| 21 |  | 
| 22 | 
             
            def create_config_modal():
         | 
|  | |
| 40 | 
             
                    )
         | 
| 41 |  | 
| 42 | 
             
                    dropdown_external_sources = gr.CheckboxGroup(
         | 
| 43 | 
            +
                        choices=["Figures (IPCC/IPBES)", "Papers (OpenAlex)", "Graphs (OurWorldInData)"],
         | 
| 44 | 
             
                        label="Select database to search for relevant content",
         | 
| 45 | 
            +
                        value=["Figures (IPCC/IPBES)"],
         | 
| 46 | 
             
                        interactive=True
         | 
| 47 | 
             
                    )
         | 
| 48 |  | 
|  | |
| 98 |  | 
| 99 | 
             
                    close_config_modal_button = gr.Button("Validate and Close", elem_id="close-config-modal")
         | 
| 100 |  | 
| 101 | 
            +
                    return ConfigPanel(
         | 
| 102 | 
            +
                        config_open=config_open,
         | 
| 103 | 
            +
                        config_modal=config_modal,
         | 
| 104 | 
            +
                        dropdown_sources=dropdown_sources,
         | 
| 105 | 
            +
                        dropdown_reports=dropdown_reports,
         | 
| 106 | 
            +
                        dropdown_external_sources=dropdown_external_sources,
         | 
| 107 | 
            +
                        search_only=search_only,
         | 
| 108 | 
            +
                        dropdown_audience=dropdown_audience,
         | 
| 109 | 
            +
                        after=after,
         | 
| 110 | 
            +
                        output_query=output_query,
         | 
| 111 | 
            +
                        output_language=output_language,
         | 
| 112 | 
            +
                        close_config_modal_button=close_config_modal_button
         | 
| 113 | 
            +
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        style.css
    CHANGED
    
    | @@ -115,6 +115,11 @@ main.flex.flex-1.flex-col { | |
| 115 | 
             
                border-radius: 40px;
         | 
| 116 | 
             
                padding-left: 30px;
         | 
| 117 | 
             
                resize: none;
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 118 | 
             
            }
         | 
| 119 |  | 
| 120 | 
             
            #input-message > div {
         | 
| @@ -474,6 +479,18 @@ a { | |
| 474 | 
             
                text-decoration: none !important;
         | 
| 475 | 
             
            }
         | 
| 476 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 477 | 
             
            /* Media Queries */
         | 
| 478 | 
             
            /* Desktop Media Query */
         | 
| 479 | 
             
            @media screen and (min-width: 1024px) {
         | 
| @@ -495,6 +512,15 @@ a { | |
| 495 | 
             
                    overflow-y: scroll !important;
         | 
| 496 | 
             
                }
         | 
| 497 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 498 | 
             
                div#chatbot-row {
         | 
| 499 | 
             
                    max-height: calc(100vh - 90px) !important;
         | 
| 500 | 
             
                }
         | 
| @@ -513,7 +539,11 @@ a { | |
| 513 | 
             
            /* Mobile Media Query */
         | 
| 514 | 
             
            @media screen and (max-width: 767px) {
         | 
| 515 | 
             
                div#chatbot {
         | 
| 516 | 
            -
                    height:  | 
|  | |
|  | |
|  | |
|  | |
| 517 | 
             
                }
         | 
| 518 |  | 
| 519 | 
             
                #submit-button {
         | 
|  | |
| 115 | 
             
                border-radius: 40px;
         | 
| 116 | 
             
                padding-left: 30px;
         | 
| 117 | 
             
                resize: none;
         | 
| 118 | 
            +
                background-color: #f0f8ff; /* Light blue background */
         | 
| 119 | 
            +
                border: 2px solid #4b8ec3; /* Blue border */
         | 
| 120 | 
            +
                font-size: 16px; /* Increase font size */
         | 
| 121 | 
            +
                color: #333; /* Text color */
         | 
| 122 | 
            +
                box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Add shadow */
         | 
| 123 | 
             
            }
         | 
| 124 |  | 
| 125 | 
             
            #input-message > div {
         | 
|  | |
| 479 | 
             
                text-decoration: none !important;
         | 
| 480 | 
             
            }
         | 
| 481 |  | 
| 482 | 
            +
            /* Follow-up Examples Styles */
         | 
| 483 | 
            +
            #follow-up-examples {
         | 
| 484 | 
            +
                height: 15vh;
         | 
| 485 | 
            +
                overflow-y: auto;
         | 
| 486 | 
            +
                padding: 10px 0;
         | 
| 487 | 
            +
            }
         | 
| 488 | 
            +
             | 
| 489 | 
            +
            #follow-up-button {
         | 
| 490 | 
            +
                height: 100%;
         | 
| 491 | 
            +
                overflow-y: auto;
         | 
| 492 | 
            +
            }
         | 
| 493 | 
            +
             | 
| 494 | 
             
            /* Media Queries */
         | 
| 495 | 
             
            /* Desktop Media Query */
         | 
| 496 | 
             
            @media screen and (min-width: 1024px) {
         | 
|  | |
| 512 | 
             
                    overflow-y: scroll !important;
         | 
| 513 | 
             
                }
         | 
| 514 |  | 
| 515 | 
            +
                div#chatbot-row {
         | 
| 516 | 
            +
                    max-height: calc(100vh - 200px) !important;
         | 
| 517 | 
            +
                }
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                div#chatbot {
         | 
| 520 | 
            +
                    height: 65vh !important;
         | 
| 521 | 
            +
                    max-height: 65vh !important;
         | 
| 522 | 
            +
                }
         | 
| 523 | 
            +
             | 
| 524 | 
             
                div#chatbot-row {
         | 
| 525 | 
             
                    max-height: calc(100vh - 90px) !important;
         | 
| 526 | 
             
                }
         | 
|  | |
| 539 | 
             
            /* Mobile Media Query */
         | 
| 540 | 
             
            @media screen and (max-width: 767px) {
         | 
| 541 | 
             
                div#chatbot {
         | 
| 542 | 
            +
                    height: 400px !important;  /* Reduced from 500px */
         | 
| 543 | 
            +
                }
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                #follow-up-examples {
         | 
| 546 | 
            +
                    height: 100px;
         | 
| 547 | 
             
                }
         | 
| 548 |  | 
| 549 | 
             
                #submit-button {
         | 
