Add step by step notebooks for drias
Browse files
sandbox/talk_to_data/20250306 - CQA - Drias.ipynb
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Import the function in main.py"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": null,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"import sys\n",
|
| 17 |
+
"import os\n",
|
| 18 |
+
"sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"%load_ext autoreload\n",
|
| 21 |
+
"%autoreload 2\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"from climateqa.engine.talk_to_data.main import ask_vanna\n"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "markdown",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"source": [
|
| 30 |
+
"## Create a human query"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"outputs": [],
|
| 38 |
+
"source": [
|
| 39 |
+
"query = \"Comment vont évoluer les températures à marseille ?\""
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "markdown",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"source": [
|
| 46 |
+
"## Call the function ask vanna, it gives an output of a the sql query and the dataframe of the result (tuple)"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"sql_query, df, fig = ask_vanna(query)\n",
|
| 56 |
+
"print(df.head())\n",
|
| 57 |
+
"fig.show()"
|
| 58 |
+
]
|
| 59 |
+
}
|
| 60 |
+
],
|
| 61 |
+
"metadata": {
|
| 62 |
+
"kernelspec": {
|
| 63 |
+
"display_name": "climateqa",
|
| 64 |
+
"language": "python",
|
| 65 |
+
"name": "python3"
|
| 66 |
+
},
|
| 67 |
+
"language_info": {
|
| 68 |
+
"codemirror_mode": {
|
| 69 |
+
"name": "ipython",
|
| 70 |
+
"version": 3
|
| 71 |
+
},
|
| 72 |
+
"file_extension": ".py",
|
| 73 |
+
"mimetype": "text/x-python",
|
| 74 |
+
"name": "python",
|
| 75 |
+
"nbconvert_exporter": "python",
|
| 76 |
+
"pygments_lexer": "ipython3",
|
| 77 |
+
"version": "3.11.9"
|
| 78 |
+
}
|
| 79 |
+
},
|
| 80 |
+
"nbformat": 4,
|
| 81 |
+
"nbformat_minor": 2
|
| 82 |
+
}
|
sandbox/talk_to_data/20250306 - CQA - Step_by_step_vanna.ipynb
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import sys\n",
|
| 10 |
+
"import os\n",
|
| 11 |
+
"sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"%load_ext autoreload\n",
|
| 14 |
+
"%autoreload 2\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"from climateqa.engine.talk_to_data.main import ask_vanna\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"import sqlite3\n",
|
| 19 |
+
"import os\n",
|
| 20 |
+
"import pandas as pd"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "markdown",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"source": [
|
| 27 |
+
"# Imports"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": null,
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"from climateqa.engine.talk_to_data.myVanna import MyVanna\n",
|
| 37 |
+
"from climateqa.engine.talk_to_data.utils import loc2coords, detect_location_with_openai, detectTable, nearestNeighbourSQL, detect_relevant_tables, replace_coordonates#,nearestNeighbourPostgres\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"from climateqa.engine.llm import get_llm"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "markdown",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"source": [
|
| 46 |
+
"# Vanna Ask\n"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"from dotenv import load_dotenv\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"load_dotenv()\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"llm = get_llm(provider=\"openai\")\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')\n",
|
| 62 |
+
"PC_API_KEY = os.getenv('VANNA_PINECONE_API_KEY')\n",
|
| 63 |
+
"INDEX_NAME = os.getenv('VANNA_INDEX_NAME')\n",
|
| 64 |
+
"VANNA_MODEL = os.getenv('VANNA_MODEL')\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"ROOT_PATH = os.path.dirname(os.path.dirname(os.getcwd()))\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"#Vanna object\n",
|
| 69 |
+
"vn = MyVanna(config = {\"temperature\": 0, \"api_key\": OPENAI_API_KEY, 'model': VANNA_MODEL, 'pc_api_key': PC_API_KEY, 'index_name': INDEX_NAME, \"top_k\" : 4})\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"db_vanna_path = ROOT_PATH + \"/data/drias/drias.db\"\n",
|
| 72 |
+
"vn.connect_to_sqlite(db_vanna_path)\n"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "markdown",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"source": [
|
| 79 |
+
"# User query"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"execution_count": null,
|
| 85 |
+
"metadata": {},
|
| 86 |
+
"outputs": [],
|
| 87 |
+
"source": [
|
| 88 |
+
"query = \"Quelle sera la température à Marseille sur les prochaines années ?\""
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "markdown",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"source": [
|
| 95 |
+
"## Detect location"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": null,
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"outputs": [],
|
| 103 |
+
"source": [
|
| 104 |
+
"location = detect_location_with_openai(OPENAI_API_KEY, query)\n",
|
| 105 |
+
"print(location)"
|
| 106 |
+
]
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"cell_type": "markdown",
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"source": [
|
| 112 |
+
"## Convert location to longitude, latitude coordonate"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [],
|
| 120 |
+
"source": [
|
| 121 |
+
"coords = loc2coords(location)\n",
|
| 122 |
+
"user_input = query.lower().replace(location.lower(), f\"lat, long : {coords}\")\n",
|
| 123 |
+
"print(user_input)"
|
| 124 |
+
]
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"cell_type": "markdown",
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"source": [
|
| 130 |
+
"# Find closest coordonates and replace lat,lon\n"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"execution_count": null,
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"outputs": [],
|
| 138 |
+
"source": [
|
| 139 |
+
"relevant_tables = detect_relevant_tables(user_input, llm) \n",
|
| 140 |
+
"coords_tables = [nearestNeighbourSQL(db_vanna_path, coords, relevant_tables[i]) for i in range(len(relevant_tables))]\n",
|
| 141 |
+
"user_input_with_coords = replace_coordonates(coords, user_input, coords_tables)\n",
|
| 142 |
+
"print(user_input_with_coords)"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "markdown",
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"source": [
|
| 149 |
+
"# Ask Vanna with correct coordonates"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": null,
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"outputs": [],
|
| 157 |
+
"source": [
|
| 158 |
+
"user_input_with_coords"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": null,
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"outputs": [],
|
| 166 |
+
"source": [
|
| 167 |
+
"sql_query, result_dataframe, figure = vn.ask(user_input_with_coords, print_results=False, allow_llm_to_see_data=True, auto_train=False)\n",
|
| 168 |
+
"print(result_dataframe.head())"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"execution_count": null,
|
| 174 |
+
"metadata": {},
|
| 175 |
+
"outputs": [],
|
| 176 |
+
"source": [
|
| 177 |
+
"result_dataframe"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": null,
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [],
|
| 185 |
+
"source": [
|
| 186 |
+
"figure"
|
| 187 |
+
]
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"cell_type": "code",
|
| 191 |
+
"execution_count": null,
|
| 192 |
+
"metadata": {},
|
| 193 |
+
"outputs": [],
|
| 194 |
+
"source": []
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"metadata": {
|
| 198 |
+
"kernelspec": {
|
| 199 |
+
"display_name": "climateqa",
|
| 200 |
+
"language": "python",
|
| 201 |
+
"name": "python3"
|
| 202 |
+
},
|
| 203 |
+
"language_info": {
|
| 204 |
+
"codemirror_mode": {
|
| 205 |
+
"name": "ipython",
|
| 206 |
+
"version": 3
|
| 207 |
+
},
|
| 208 |
+
"file_extension": ".py",
|
| 209 |
+
"mimetype": "text/x-python",
|
| 210 |
+
"name": "python",
|
| 211 |
+
"nbconvert_exporter": "python",
|
| 212 |
+
"pygments_lexer": "ipython3",
|
| 213 |
+
"version": "3.11.9"
|
| 214 |
+
}
|
| 215 |
+
},
|
| 216 |
+
"nbformat": 4,
|
| 217 |
+
"nbformat_minor": 2
|
| 218 |
+
}
|