Spaces:
Runtime error
Runtime error
| import argparse, os, sys, glob, math, time | |
| import torch | |
| import numpy as np | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from main import instantiate_from_config, DataModuleFromConfig | |
| from torch.utils.data import DataLoader | |
| from torch.utils.data.dataloader import default_collate | |
| from tqdm import trange | |
| def save_image(x, path): | |
| c,h,w = x.shape | |
| assert c==3 | |
| x = ((x.detach().cpu().numpy().transpose(1,2,0)+1.0)*127.5).clip(0,255).astype(np.uint8) | |
| Image.fromarray(x).save(path) | |
| def run_conditional(model, dsets, outdir, top_k, temperature, batch_size=1): | |
| if len(dsets.datasets) > 1: | |
| split = sorted(dsets.datasets.keys())[0] | |
| dset = dsets.datasets[split] | |
| else: | |
| dset = next(iter(dsets.datasets.values())) | |
| print("Dataset: ", dset.__class__.__name__) | |
| for start_idx in trange(0,len(dset)-batch_size+1,batch_size): | |
| indices = list(range(start_idx, start_idx+batch_size)) | |
| example = default_collate([dset[i] for i in indices]) | |
| x = model.get_input("image", example).to(model.device) | |
| for i in range(x.shape[0]): | |
| save_image(x[i], os.path.join(outdir, "originals", | |
| "{:06}.png".format(indices[i]))) | |
| cond_key = model.cond_stage_key | |
| c = model.get_input(cond_key, example).to(model.device) | |
| scale_factor = 1.0 | |
| quant_z, z_indices = model.encode_to_z(x) | |
| quant_c, c_indices = model.encode_to_c(c) | |
| cshape = quant_z.shape | |
| xrec = model.first_stage_model.decode(quant_z) | |
| for i in range(xrec.shape[0]): | |
| save_image(xrec[i], os.path.join(outdir, "reconstructions", | |
| "{:06}.png".format(indices[i]))) | |
| if cond_key == "segmentation": | |
| # get image from segmentation mask | |
| num_classes = c.shape[1] | |
| c = torch.argmax(c, dim=1, keepdim=True) | |
| c = torch.nn.functional.one_hot(c, num_classes=num_classes) | |
| c = c.squeeze(1).permute(0, 3, 1, 2).float() | |
| c = model.cond_stage_model.to_rgb(c) | |
| idx = z_indices | |
| half_sample = False | |
| if half_sample: | |
| start = idx.shape[1]//2 | |
| else: | |
| start = 0 | |
| idx[:,start:] = 0 | |
| idx = idx.reshape(cshape[0],cshape[2],cshape[3]) | |
| start_i = start//cshape[3] | |
| start_j = start %cshape[3] | |
| cidx = c_indices | |
| cidx = cidx.reshape(quant_c.shape[0],quant_c.shape[2],quant_c.shape[3]) | |
| sample = True | |
| for i in range(start_i,cshape[2]-0): | |
| if i <= 8: | |
| local_i = i | |
| elif cshape[2]-i < 8: | |
| local_i = 16-(cshape[2]-i) | |
| else: | |
| local_i = 8 | |
| for j in range(start_j,cshape[3]-0): | |
| if j <= 8: | |
| local_j = j | |
| elif cshape[3]-j < 8: | |
| local_j = 16-(cshape[3]-j) | |
| else: | |
| local_j = 8 | |
| i_start = i-local_i | |
| i_end = i_start+16 | |
| j_start = j-local_j | |
| j_end = j_start+16 | |
| patch = idx[:,i_start:i_end,j_start:j_end] | |
| patch = patch.reshape(patch.shape[0],-1) | |
| cpatch = cidx[:, i_start:i_end, j_start:j_end] | |
| cpatch = cpatch.reshape(cpatch.shape[0], -1) | |
| patch = torch.cat((cpatch, patch), dim=1) | |
| logits,_ = model.transformer(patch[:,:-1]) | |
| logits = logits[:, -256:, :] | |
| logits = logits.reshape(cshape[0],16,16,-1) | |
| logits = logits[:,local_i,local_j,:] | |
| logits = logits/temperature | |
| if top_k is not None: | |
| logits = model.top_k_logits(logits, top_k) | |
| # apply softmax to convert to probabilities | |
| probs = torch.nn.functional.softmax(logits, dim=-1) | |
| # sample from the distribution or take the most likely | |
| if sample: | |
| ix = torch.multinomial(probs, num_samples=1) | |
| else: | |
| _, ix = torch.topk(probs, k=1, dim=-1) | |
| idx[:,i,j] = ix | |
| xsample = model.decode_to_img(idx[:,:cshape[2],:cshape[3]], cshape) | |
| for i in range(xsample.shape[0]): | |
| save_image(xsample[i], os.path.join(outdir, "samples", | |
| "{:06}.png".format(indices[i]))) | |
| def get_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-r", | |
| "--resume", | |
| type=str, | |
| nargs="?", | |
| help="load from logdir or checkpoint in logdir", | |
| ) | |
| parser.add_argument( | |
| "-b", | |
| "--base", | |
| nargs="*", | |
| metavar="base_config.yaml", | |
| help="paths to base configs. Loaded from left-to-right. " | |
| "Parameters can be overwritten or added with command-line options of the form `--key value`.", | |
| default=list(), | |
| ) | |
| parser.add_argument( | |
| "-c", | |
| "--config", | |
| nargs="?", | |
| metavar="single_config.yaml", | |
| help="path to single config. If specified, base configs will be ignored " | |
| "(except for the last one if left unspecified).", | |
| const=True, | |
| default="", | |
| ) | |
| parser.add_argument( | |
| "--ignore_base_data", | |
| action="store_true", | |
| help="Ignore data specification from base configs. Useful if you want " | |
| "to specify a custom datasets on the command line.", | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| required=True, | |
| type=str, | |
| help="Where to write outputs to.", | |
| ) | |
| parser.add_argument( | |
| "--top_k", | |
| type=int, | |
| default=100, | |
| help="Sample from among top-k predictions.", | |
| ) | |
| parser.add_argument( | |
| "--temperature", | |
| type=float, | |
| default=1.0, | |
| help="Sampling temperature.", | |
| ) | |
| return parser | |
| def load_model_from_config(config, sd, gpu=True, eval_mode=True): | |
| if "ckpt_path" in config.params: | |
| print("Deleting the restore-ckpt path from the config...") | |
| config.params.ckpt_path = None | |
| if "downsample_cond_size" in config.params: | |
| print("Deleting downsample-cond-size from the config and setting factor=0.5 instead...") | |
| config.params.downsample_cond_size = -1 | |
| config.params["downsample_cond_factor"] = 0.5 | |
| try: | |
| if "ckpt_path" in config.params.first_stage_config.params: | |
| config.params.first_stage_config.params.ckpt_path = None | |
| print("Deleting the first-stage restore-ckpt path from the config...") | |
| if "ckpt_path" in config.params.cond_stage_config.params: | |
| config.params.cond_stage_config.params.ckpt_path = None | |
| print("Deleting the cond-stage restore-ckpt path from the config...") | |
| except: | |
| pass | |
| model = instantiate_from_config(config) | |
| if sd is not None: | |
| missing, unexpected = model.load_state_dict(sd, strict=False) | |
| print(f"Missing Keys in State Dict: {missing}") | |
| print(f"Unexpected Keys in State Dict: {unexpected}") | |
| if gpu: | |
| model.cuda() | |
| if eval_mode: | |
| model.eval() | |
| return {"model": model} | |
| def get_data(config): | |
| # get data | |
| data = instantiate_from_config(config.data) | |
| data.prepare_data() | |
| data.setup() | |
| return data | |
| def load_model_and_dset(config, ckpt, gpu, eval_mode): | |
| # get data | |
| dsets = get_data(config) # calls data.config ... | |
| # now load the specified checkpoint | |
| if ckpt: | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| global_step = pl_sd["global_step"] | |
| else: | |
| pl_sd = {"state_dict": None} | |
| global_step = None | |
| model = load_model_from_config(config.model, | |
| pl_sd["state_dict"], | |
| gpu=gpu, | |
| eval_mode=eval_mode)["model"] | |
| return dsets, model, global_step | |
| if __name__ == "__main__": | |
| sys.path.append(os.getcwd()) | |
| parser = get_parser() | |
| opt, unknown = parser.parse_known_args() | |
| ckpt = None | |
| if opt.resume: | |
| if not os.path.exists(opt.resume): | |
| raise ValueError("Cannot find {}".format(opt.resume)) | |
| if os.path.isfile(opt.resume): | |
| paths = opt.resume.split("/") | |
| try: | |
| idx = len(paths)-paths[::-1].index("logs")+1 | |
| except ValueError: | |
| idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt | |
| logdir = "/".join(paths[:idx]) | |
| ckpt = opt.resume | |
| else: | |
| assert os.path.isdir(opt.resume), opt.resume | |
| logdir = opt.resume.rstrip("/") | |
| ckpt = os.path.join(logdir, "checkpoints", "last.ckpt") | |
| print(f"logdir:{logdir}") | |
| base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*-project.yaml"))) | |
| opt.base = base_configs+opt.base | |
| if opt.config: | |
| if type(opt.config) == str: | |
| opt.base = [opt.config] | |
| else: | |
| opt.base = [opt.base[-1]] | |
| configs = [OmegaConf.load(cfg) for cfg in opt.base] | |
| cli = OmegaConf.from_dotlist(unknown) | |
| if opt.ignore_base_data: | |
| for config in configs: | |
| if hasattr(config, "data"): del config["data"] | |
| config = OmegaConf.merge(*configs, cli) | |
| print(ckpt) | |
| gpu = True | |
| eval_mode = True | |
| show_config = False | |
| if show_config: | |
| print(OmegaConf.to_container(config)) | |
| dsets, model, global_step = load_model_and_dset(config, ckpt, gpu, eval_mode) | |
| print(f"Global step: {global_step}") | |
| outdir = os.path.join(opt.outdir, "{:06}_{}_{}".format(global_step, | |
| opt.top_k, | |
| opt.temperature)) | |
| os.makedirs(outdir, exist_ok=True) | |
| print("Writing samples to ", outdir) | |
| for k in ["originals", "reconstructions", "samples"]: | |
| os.makedirs(os.path.join(outdir, k), exist_ok=True) | |
| run_conditional(model, dsets, outdir, opt.top_k, opt.temperature) | |