Spaces:
Runtime error
Runtime error
| import os | |
| import numpy as np | |
| import cv2 | |
| import albumentations | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from taming.data.sflckr import SegmentationBase # for examples included in repo | |
| class Examples(SegmentationBase): | |
| def __init__(self, size=256, random_crop=False, interpolation="bicubic"): | |
| super().__init__(data_csv="data/ade20k_examples.txt", | |
| data_root="data/ade20k_images", | |
| segmentation_root="data/ade20k_segmentations", | |
| size=size, random_crop=random_crop, | |
| interpolation=interpolation, | |
| n_labels=151, shift_segmentation=False) | |
| # With semantic map and scene label | |
| class ADE20kBase(Dataset): | |
| def __init__(self, config=None, size=None, random_crop=False, interpolation="bicubic", crop_size=None): | |
| self.split = self.get_split() | |
| self.n_labels = 151 # unknown + 150 | |
| self.data_csv = {"train": "data/ade20k_train.txt", | |
| "validation": "data/ade20k_test.txt"}[self.split] | |
| self.data_root = "data/ade20k_root" | |
| with open(os.path.join(self.data_root, "sceneCategories.txt"), "r") as f: | |
| self.scene_categories = f.read().splitlines() | |
| self.scene_categories = dict(line.split() for line in self.scene_categories) | |
| with open(self.data_csv, "r") as f: | |
| self.image_paths = f.read().splitlines() | |
| self._length = len(self.image_paths) | |
| self.labels = { | |
| "relative_file_path_": [l for l in self.image_paths], | |
| "file_path_": [os.path.join(self.data_root, "images", l) | |
| for l in self.image_paths], | |
| "relative_segmentation_path_": [l.replace(".jpg", ".png") | |
| for l in self.image_paths], | |
| "segmentation_path_": [os.path.join(self.data_root, "annotations", | |
| l.replace(".jpg", ".png")) | |
| for l in self.image_paths], | |
| "scene_category": [self.scene_categories[l.split("/")[1].replace(".jpg", "")] | |
| for l in self.image_paths], | |
| } | |
| size = None if size is not None and size<=0 else size | |
| self.size = size | |
| if crop_size is None: | |
| self.crop_size = size if size is not None else None | |
| else: | |
| self.crop_size = crop_size | |
| if self.size is not None: | |
| self.interpolation = interpolation | |
| self.interpolation = { | |
| "nearest": cv2.INTER_NEAREST, | |
| "bilinear": cv2.INTER_LINEAR, | |
| "bicubic": cv2.INTER_CUBIC, | |
| "area": cv2.INTER_AREA, | |
| "lanczos": cv2.INTER_LANCZOS4}[self.interpolation] | |
| self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, | |
| interpolation=self.interpolation) | |
| self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, | |
| interpolation=cv2.INTER_NEAREST) | |
| if crop_size is not None: | |
| self.center_crop = not random_crop | |
| if self.center_crop: | |
| self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) | |
| else: | |
| self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) | |
| self.preprocessor = self.cropper | |
| def __len__(self): | |
| return self._length | |
| def __getitem__(self, i): | |
| example = dict((k, self.labels[k][i]) for k in self.labels) | |
| image = Image.open(example["file_path_"]) | |
| if not image.mode == "RGB": | |
| image = image.convert("RGB") | |
| image = np.array(image).astype(np.uint8) | |
| if self.size is not None: | |
| image = self.image_rescaler(image=image)["image"] | |
| segmentation = Image.open(example["segmentation_path_"]) | |
| segmentation = np.array(segmentation).astype(np.uint8) | |
| if self.size is not None: | |
| segmentation = self.segmentation_rescaler(image=segmentation)["image"] | |
| if self.size is not None: | |
| processed = self.preprocessor(image=image, mask=segmentation) | |
| else: | |
| processed = {"image": image, "mask": segmentation} | |
| example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) | |
| segmentation = processed["mask"] | |
| onehot = np.eye(self.n_labels)[segmentation] | |
| example["segmentation"] = onehot | |
| return example | |
| class ADE20kTrain(ADE20kBase): | |
| # default to random_crop=True | |
| def __init__(self, config=None, size=None, random_crop=True, interpolation="bicubic", crop_size=None): | |
| super().__init__(config=config, size=size, random_crop=random_crop, | |
| interpolation=interpolation, crop_size=crop_size) | |
| def get_split(self): | |
| return "train" | |
| class ADE20kValidation(ADE20kBase): | |
| def get_split(self): | |
| return "validation" | |
| if __name__ == "__main__": | |
| dset = ADE20kValidation() | |
| ex = dset[0] | |
| for k in ["image", "scene_category", "segmentation"]: | |
| print(type(ex[k])) | |
| try: | |
| print(ex[k].shape) | |
| except: | |
| print(ex[k]) | |