Spaces:
Runtime error
Runtime error
| import os, math | |
| import torch | |
| import torch.nn.functional as F | |
| import pytorch_lightning as pl | |
| from main import instantiate_from_config | |
| from taming.modules.util import SOSProvider | |
| def disabled_train(self, mode=True): | |
| """Overwrite model.train with this function to make sure train/eval mode | |
| does not change anymore.""" | |
| return self | |
| class Net2NetTransformer(pl.LightningModule): | |
| def __init__(self, | |
| transformer_config, | |
| first_stage_config, | |
| cond_stage_config, | |
| permuter_config=None, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| first_stage_key="image", | |
| cond_stage_key="depth", | |
| downsample_cond_size=-1, | |
| pkeep=1.0, | |
| sos_token=0, | |
| unconditional=False, | |
| ): | |
| super().__init__() | |
| self.be_unconditional = unconditional | |
| self.sos_token = sos_token | |
| self.first_stage_key = first_stage_key | |
| self.cond_stage_key = cond_stage_key | |
| self.init_first_stage_from_ckpt(first_stage_config) | |
| self.init_cond_stage_from_ckpt(cond_stage_config) | |
| if permuter_config is None: | |
| permuter_config = {"target": "taming.modules.transformer.permuter.Identity"} | |
| self.permuter = instantiate_from_config(config=permuter_config) | |
| self.transformer = instantiate_from_config(config=transformer_config) | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| self.downsample_cond_size = downsample_cond_size | |
| self.pkeep = pkeep | |
| def init_from_ckpt(self, path, ignore_keys=list()): | |
| sd = torch.load(path, map_location="cpu")["state_dict"] | |
| for k in sd.keys(): | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| self.print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| self.load_state_dict(sd, strict=False) | |
| print(f"Restored from {path}") | |
| def init_first_stage_from_ckpt(self, config): | |
| model = instantiate_from_config(config) | |
| model = model.eval() | |
| model.train = disabled_train | |
| self.first_stage_model = model | |
| def init_cond_stage_from_ckpt(self, config): | |
| if config == "__is_first_stage__": | |
| print("Using first stage also as cond stage.") | |
| self.cond_stage_model = self.first_stage_model | |
| elif config == "__is_unconditional__" or self.be_unconditional: | |
| print(f"Using no cond stage. Assuming the training is intended to be unconditional. " | |
| f"Prepending {self.sos_token} as a sos token.") | |
| self.be_unconditional = True | |
| self.cond_stage_key = self.first_stage_key | |
| self.cond_stage_model = SOSProvider(self.sos_token) | |
| else: | |
| model = instantiate_from_config(config) | |
| model = model.eval() | |
| model.train = disabled_train | |
| self.cond_stage_model = model | |
| def forward(self, x, c): | |
| # one step to produce the logits | |
| _, z_indices = self.encode_to_z(x) | |
| _, c_indices = self.encode_to_c(c) | |
| if self.training and self.pkeep < 1.0: | |
| mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape, | |
| device=z_indices.device)) | |
| mask = mask.round().to(dtype=torch.int64) | |
| r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size) | |
| a_indices = mask*z_indices+(1-mask)*r_indices | |
| else: | |
| a_indices = z_indices | |
| cz_indices = torch.cat((c_indices, a_indices), dim=1) | |
| # target includes all sequence elements (no need to handle first one | |
| # differently because we are conditioning) | |
| target = z_indices | |
| # make the prediction | |
| logits, _ = self.transformer(cz_indices[:, :-1]) | |
| # cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c) | |
| logits = logits[:, c_indices.shape[1]-1:] | |
| return logits, target | |
| def top_k_logits(self, logits, k): | |
| v, ix = torch.topk(logits, k) | |
| out = logits.clone() | |
| out[out < v[..., [-1]]] = -float('Inf') | |
| return out | |
| def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None, | |
| callback=lambda k: None): | |
| x = torch.cat((c,x),dim=1) | |
| block_size = self.transformer.get_block_size() | |
| assert not self.transformer.training | |
| if self.pkeep <= 0.0: | |
| # one pass suffices since input is pure noise anyway | |
| assert len(x.shape)==2 | |
| noise_shape = (x.shape[0], steps-1) | |
| #noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x) | |
| noise = c.clone()[:,x.shape[1]-c.shape[1]:-1] | |
| x = torch.cat((x,noise),dim=1) | |
| logits, _ = self.transformer(x) | |
| # take all logits for now and scale by temp | |
| logits = logits / temperature | |
| # optionally crop probabilities to only the top k options | |
| if top_k is not None: | |
| logits = self.top_k_logits(logits, top_k) | |
| # apply softmax to convert to probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # sample from the distribution or take the most likely | |
| if sample: | |
| shape = probs.shape | |
| probs = probs.reshape(shape[0]*shape[1],shape[2]) | |
| ix = torch.multinomial(probs, num_samples=1) | |
| probs = probs.reshape(shape[0],shape[1],shape[2]) | |
| ix = ix.reshape(shape[0],shape[1]) | |
| else: | |
| _, ix = torch.topk(probs, k=1, dim=-1) | |
| # cut off conditioning | |
| x = ix[:, c.shape[1]-1:] | |
| else: | |
| for k in range(steps): | |
| callback(k) | |
| assert x.size(1) <= block_size # make sure model can see conditioning | |
| x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed | |
| logits, _ = self.transformer(x_cond) | |
| # pluck the logits at the final step and scale by temperature | |
| logits = logits[:, -1, :] / temperature | |
| # optionally crop probabilities to only the top k options | |
| if top_k is not None: | |
| logits = self.top_k_logits(logits, top_k) | |
| # apply softmax to convert to probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # sample from the distribution or take the most likely | |
| if sample: | |
| ix = torch.multinomial(probs, num_samples=1) | |
| else: | |
| _, ix = torch.topk(probs, k=1, dim=-1) | |
| # append to the sequence and continue | |
| x = torch.cat((x, ix), dim=1) | |
| # cut off conditioning | |
| x = x[:, c.shape[1]:] | |
| return x | |
| def encode_to_z(self, x): | |
| quant_z, _, info = self.first_stage_model.encode(x) | |
| indices = info[2].view(quant_z.shape[0], -1) | |
| indices = self.permuter(indices) | |
| return quant_z, indices | |
| def encode_to_c(self, c): | |
| if self.downsample_cond_size > -1: | |
| c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size)) | |
| quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c) | |
| if len(indices.shape) > 2: | |
| indices = indices.view(c.shape[0], -1) | |
| return quant_c, indices | |
| def decode_to_img(self, index, zshape): | |
| index = self.permuter(index, reverse=True) | |
| bhwc = (zshape[0],zshape[2],zshape[3],zshape[1]) | |
| quant_z = self.first_stage_model.quantize.get_codebook_entry( | |
| index.reshape(-1), shape=bhwc) | |
| x = self.first_stage_model.decode(quant_z) | |
| return x | |
| def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs): | |
| log = dict() | |
| N = 4 | |
| if lr_interface: | |
| x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8) | |
| else: | |
| x, c = self.get_xc(batch, N) | |
| x = x.to(device=self.device) | |
| c = c.to(device=self.device) | |
| quant_z, z_indices = self.encode_to_z(x) | |
| quant_c, c_indices = self.encode_to_c(c) | |
| # create a "half"" sample | |
| z_start_indices = z_indices[:,:z_indices.shape[1]//2] | |
| index_sample = self.sample(z_start_indices, c_indices, | |
| steps=z_indices.shape[1]-z_start_indices.shape[1], | |
| temperature=temperature if temperature is not None else 1.0, | |
| sample=True, | |
| top_k=top_k if top_k is not None else 100, | |
| callback=callback if callback is not None else lambda k: None) | |
| x_sample = self.decode_to_img(index_sample, quant_z.shape) | |
| # sample | |
| z_start_indices = z_indices[:, :0] | |
| index_sample = self.sample(z_start_indices, c_indices, | |
| steps=z_indices.shape[1], | |
| temperature=temperature if temperature is not None else 1.0, | |
| sample=True, | |
| top_k=top_k if top_k is not None else 100, | |
| callback=callback if callback is not None else lambda k: None) | |
| x_sample_nopix = self.decode_to_img(index_sample, quant_z.shape) | |
| # det sample | |
| z_start_indices = z_indices[:, :0] | |
| index_sample = self.sample(z_start_indices, c_indices, | |
| steps=z_indices.shape[1], | |
| sample=False, | |
| callback=callback if callback is not None else lambda k: None) | |
| x_sample_det = self.decode_to_img(index_sample, quant_z.shape) | |
| # reconstruction | |
| x_rec = self.decode_to_img(z_indices, quant_z.shape) | |
| log["inputs"] = x | |
| log["reconstructions"] = x_rec | |
| if self.cond_stage_key != "image": | |
| cond_rec = self.cond_stage_model.decode(quant_c) | |
| if self.cond_stage_key == "segmentation": | |
| # get image from segmentation mask | |
| num_classes = cond_rec.shape[1] | |
| c = torch.argmax(c, dim=1, keepdim=True) | |
| c = F.one_hot(c, num_classes=num_classes) | |
| c = c.squeeze(1).permute(0, 3, 1, 2).float() | |
| c = self.cond_stage_model.to_rgb(c) | |
| cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True) | |
| cond_rec = F.one_hot(cond_rec, num_classes=num_classes) | |
| cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float() | |
| cond_rec = self.cond_stage_model.to_rgb(cond_rec) | |
| log["conditioning_rec"] = cond_rec | |
| log["conditioning"] = c | |
| log["samples_half"] = x_sample | |
| log["samples_nopix"] = x_sample_nopix | |
| log["samples_det"] = x_sample_det | |
| return log | |
| def get_input(self, key, batch): | |
| x = batch[key] | |
| if len(x.shape) == 3: | |
| x = x[..., None] | |
| if len(x.shape) == 4: | |
| x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
| if x.dtype == torch.double: | |
| x = x.float() | |
| return x | |
| def get_xc(self, batch, N=None): | |
| x = self.get_input(self.first_stage_key, batch) | |
| c = self.get_input(self.cond_stage_key, batch) | |
| if N is not None: | |
| x = x[:N] | |
| c = c[:N] | |
| return x, c | |
| def shared_step(self, batch, batch_idx): | |
| x, c = self.get_xc(batch) | |
| logits, target = self(x, c) | |
| loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1)) | |
| return loss | |
| def training_step(self, batch, batch_idx): | |
| loss = self.shared_step(batch, batch_idx) | |
| self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| return loss | |
| def validation_step(self, batch, batch_idx): | |
| loss = self.shared_step(batch, batch_idx) | |
| self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| return loss | |
| def configure_optimizers(self): | |
| """ | |
| Following minGPT: | |
| This long function is unfortunately doing something very simple and is being very defensive: | |
| We are separating out all parameters of the model into two buckets: those that will experience | |
| weight decay for regularization and those that won't (biases, and layernorm/embedding weights). | |
| We are then returning the PyTorch optimizer object. | |
| """ | |
| # separate out all parameters to those that will and won't experience regularizing weight decay | |
| decay = set() | |
| no_decay = set() | |
| whitelist_weight_modules = (torch.nn.Linear, ) | |
| blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) | |
| for mn, m in self.transformer.named_modules(): | |
| for pn, p in m.named_parameters(): | |
| fpn = '%s.%s' % (mn, pn) if mn else pn # full param name | |
| if pn.endswith('bias'): | |
| # all biases will not be decayed | |
| no_decay.add(fpn) | |
| elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): | |
| # weights of whitelist modules will be weight decayed | |
| decay.add(fpn) | |
| elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): | |
| # weights of blacklist modules will NOT be weight decayed | |
| no_decay.add(fpn) | |
| # special case the position embedding parameter in the root GPT module as not decayed | |
| no_decay.add('pos_emb') | |
| # validate that we considered every parameter | |
| param_dict = {pn: p for pn, p in self.transformer.named_parameters()} | |
| inter_params = decay & no_decay | |
| union_params = decay | no_decay | |
| assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) | |
| assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ | |
| % (str(param_dict.keys() - union_params), ) | |
| # create the pytorch optimizer object | |
| optim_groups = [ | |
| {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01}, | |
| {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, | |
| ] | |
| optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95)) | |
| return optimizer | |