Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
Β·
e984b5c
1
Parent(s):
8ce726b
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
torch.hub.download_url_to_file('http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.yaml', 'vqgan_imagenet_f16_16384.yaml')
|
| 3 |
+
torch.hub.download_url_to_file('http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.ckpt', 'vqgan_imagenet_f16_16384.ckpt')
|
| 4 |
+
import argparse
|
| 5 |
+
import math
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
sys.path.insert(1, './taming-transformers')
|
| 10 |
+
from IPython import display
|
| 11 |
+
from base64 import b64encode
|
| 12 |
+
from omegaconf import OmegaConf
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from taming.models import cond_transformer, vqgan
|
| 15 |
+
import taming.modules
|
| 16 |
+
from torch import nn, optim
|
| 17 |
+
from torch.nn import functional as F
|
| 18 |
+
from torchvision import transforms
|
| 19 |
+
from torchvision.transforms import functional as TF
|
| 20 |
+
from tqdm.notebook import tqdm
|
| 21 |
+
|
| 22 |
+
from CLIP import clip
|
| 23 |
+
import kornia.augmentation as K
|
| 24 |
+
import numpy as np
|
| 25 |
+
import imageio
|
| 26 |
+
from PIL import ImageFile, Image
|
| 27 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 28 |
+
import gradio as gr
|
| 29 |
+
|
| 30 |
+
def sinc(x):
|
| 31 |
+
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def lanczos(x, a):
|
| 35 |
+
cond = torch.logical_and(-a < x, x < a)
|
| 36 |
+
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
|
| 37 |
+
return out / out.sum()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def ramp(ratio, width):
|
| 41 |
+
n = math.ceil(width / ratio + 1)
|
| 42 |
+
out = torch.empty([n])
|
| 43 |
+
cur = 0
|
| 44 |
+
for i in range(out.shape[0]):
|
| 45 |
+
out[i] = cur
|
| 46 |
+
cur += ratio
|
| 47 |
+
return torch.cat([-out[1:].flip([0]), out])[1:-1]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def resample(input, size, align_corners=True):
|
| 51 |
+
n, c, h, w = input.shape
|
| 52 |
+
dh, dw = size
|
| 53 |
+
|
| 54 |
+
input = input.view([n * c, 1, h, w])
|
| 55 |
+
|
| 56 |
+
if dh < h:
|
| 57 |
+
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
|
| 58 |
+
pad_h = (kernel_h.shape[0] - 1) // 2
|
| 59 |
+
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
|
| 60 |
+
input = F.conv2d(input, kernel_h[None, None, :, None])
|
| 61 |
+
|
| 62 |
+
if dw < w:
|
| 63 |
+
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
|
| 64 |
+
pad_w = (kernel_w.shape[0] - 1) // 2
|
| 65 |
+
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
|
| 66 |
+
input = F.conv2d(input, kernel_w[None, None, None, :])
|
| 67 |
+
|
| 68 |
+
input = input.view([n, c, h, w])
|
| 69 |
+
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class ReplaceGrad(torch.autograd.Function):
|
| 73 |
+
@staticmethod
|
| 74 |
+
def forward(ctx, x_forward, x_backward):
|
| 75 |
+
ctx.shape = x_backward.shape
|
| 76 |
+
return x_forward
|
| 77 |
+
|
| 78 |
+
@staticmethod
|
| 79 |
+
def backward(ctx, grad_in):
|
| 80 |
+
return None, grad_in.sum_to_size(ctx.shape)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
replace_grad = ReplaceGrad.apply
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ClampWithGrad(torch.autograd.Function):
|
| 87 |
+
@staticmethod
|
| 88 |
+
def forward(ctx, input, min, max):
|
| 89 |
+
ctx.min = min
|
| 90 |
+
ctx.max = max
|
| 91 |
+
ctx.save_for_backward(input)
|
| 92 |
+
return input.clamp(min, max)
|
| 93 |
+
|
| 94 |
+
@staticmethod
|
| 95 |
+
def backward(ctx, grad_in):
|
| 96 |
+
input, = ctx.saved_tensors
|
| 97 |
+
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
clamp_with_grad = ClampWithGrad.apply
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def vector_quantize(x, codebook):
|
| 104 |
+
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
|
| 105 |
+
indices = d.argmin(-1)
|
| 106 |
+
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
|
| 107 |
+
return replace_grad(x_q, x)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class Prompt(nn.Module):
|
| 111 |
+
def __init__(self, embed, weight=1., stop=float('-inf')):
|
| 112 |
+
super().__init__()
|
| 113 |
+
self.register_buffer('embed', embed)
|
| 114 |
+
self.register_buffer('weight', torch.as_tensor(weight))
|
| 115 |
+
self.register_buffer('stop', torch.as_tensor(stop))
|
| 116 |
+
|
| 117 |
+
def forward(self, input):
|
| 118 |
+
input_normed = F.normalize(input.unsqueeze(1), dim=2)
|
| 119 |
+
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
|
| 120 |
+
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
|
| 121 |
+
dists = dists * self.weight.sign()
|
| 122 |
+
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def parse_prompt(prompt):
|
| 126 |
+
vals = prompt.rsplit(':', 2)
|
| 127 |
+
vals = vals + ['', '1', '-inf'][len(vals):]
|
| 128 |
+
return vals[0], float(vals[1]), float(vals[2])
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class MakeCutouts(nn.Module):
|
| 132 |
+
def __init__(self, cut_size, cutn, cut_pow=1.):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.cut_size = cut_size
|
| 135 |
+
self.cutn = cutn
|
| 136 |
+
self.cut_pow = cut_pow
|
| 137 |
+
|
| 138 |
+
self.augs = nn.Sequential(
|
| 139 |
+
# K.RandomHorizontalFlip(p=0.5),
|
| 140 |
+
# K.RandomVerticalFlip(p=0.5),
|
| 141 |
+
# K.RandomSolarize(0.01, 0.01, p=0.7),
|
| 142 |
+
# K.RandomSharpness(0.3,p=0.4),
|
| 143 |
+
# K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5),
|
| 144 |
+
# K.RandomCrop(size=(self.cut_size,self.cut_size), p=0.5),
|
| 145 |
+
K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border'),
|
| 146 |
+
K.RandomPerspective(0.7,p=0.7),
|
| 147 |
+
K.ColorJitter(hue=0.1, saturation=0.1, p=0.7),
|
| 148 |
+
K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7),
|
| 149 |
+
|
| 150 |
+
)
|
| 151 |
+
self.noise_fac = 0.1
|
| 152 |
+
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
|
| 153 |
+
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
|
| 154 |
+
|
| 155 |
+
def forward(self, input):
|
| 156 |
+
sideY, sideX = input.shape[2:4]
|
| 157 |
+
max_size = min(sideX, sideY)
|
| 158 |
+
min_size = min(sideX, sideY, self.cut_size)
|
| 159 |
+
cutouts = []
|
| 160 |
+
|
| 161 |
+
for _ in range(self.cutn):
|
| 162 |
+
|
| 163 |
+
# size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
|
| 164 |
+
# offsetx = torch.randint(0, sideX - size + 1, ())
|
| 165 |
+
# offsety = torch.randint(0, sideY - size + 1, ())
|
| 166 |
+
# cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
|
| 167 |
+
# cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
|
| 168 |
+
|
| 169 |
+
# cutout = transforms.Resize(size=(self.cut_size, self.cut_size))(input)
|
| 170 |
+
|
| 171 |
+
cutout = (self.av_pool(input) + self.max_pool(input))/2
|
| 172 |
+
cutouts.append(cutout)
|
| 173 |
+
batch = self.augs(torch.cat(cutouts, dim=0))
|
| 174 |
+
if self.noise_fac:
|
| 175 |
+
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
|
| 176 |
+
batch = batch + facs * torch.randn_like(batch)
|
| 177 |
+
return batch
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def load_vqgan_model(config_path, checkpoint_path):
|
| 181 |
+
config = OmegaConf.load(config_path)
|
| 182 |
+
if config.model.target == 'taming.models.vqgan.VQModel':
|
| 183 |
+
model = vqgan.VQModel(**config.model.params)
|
| 184 |
+
model.eval().requires_grad_(False)
|
| 185 |
+
model.init_from_ckpt(checkpoint_path)
|
| 186 |
+
elif config.model.target == 'taming.models.vqgan.GumbelVQ':
|
| 187 |
+
model = vqgan.GumbelVQ(**config.model.params)
|
| 188 |
+
model.eval().requires_grad_(False)
|
| 189 |
+
model.init_from_ckpt(checkpoint_path)
|
| 190 |
+
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
|
| 191 |
+
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
|
| 192 |
+
parent_model.eval().requires_grad_(False)
|
| 193 |
+
parent_model.init_from_ckpt(checkpoint_path)
|
| 194 |
+
model = parent_model.first_stage_model
|
| 195 |
+
else:
|
| 196 |
+
raise ValueError(f'unknown model type: {config.model.target}')
|
| 197 |
+
del model.loss
|
| 198 |
+
return model
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def resize_image(image, out_size):
|
| 202 |
+
ratio = image.size[0] / image.size[1]
|
| 203 |
+
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
|
| 204 |
+
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
|
| 205 |
+
return image.resize(size, Image.LANCZOS)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def inference(text):
|
| 209 |
+
texts = text
|
| 210 |
+
width = 300
|
| 211 |
+
height = 300
|
| 212 |
+
model = "vqgan_imagenet_f16_16384"
|
| 213 |
+
images_interval = 50
|
| 214 |
+
init_image = ""
|
| 215 |
+
target_images = ""
|
| 216 |
+
seed = 42
|
| 217 |
+
max_iterations = 300
|
| 218 |
+
|
| 219 |
+
model_names={"vqgan_imagenet_f16_16384": 'ImageNet 16384',"vqgan_imagenet_f16_1024":"ImageNet 1024", 'vqgan_openimages_f16_8192':'OpenImages 8912',
|
| 220 |
+
"wikiart_1024":"WikiArt 1024", "wikiart_16384":"WikiArt 16384", "coco":"COCO-Stuff", "faceshq":"FacesHQ", "sflckr":"S-FLCKR"}
|
| 221 |
+
name_model = model_names[model]
|
| 222 |
+
|
| 223 |
+
if seed == -1:
|
| 224 |
+
seed = None
|
| 225 |
+
if init_image == "None":
|
| 226 |
+
init_image = None
|
| 227 |
+
if target_images == "None" or not target_images:
|
| 228 |
+
target_images = []
|
| 229 |
+
else:
|
| 230 |
+
target_images = target_images.split("|")
|
| 231 |
+
target_images = [image.strip() for image in target_images]
|
| 232 |
+
|
| 233 |
+
texts = [phrase.strip() for phrase in texts.split("|")]
|
| 234 |
+
if texts == ['']:
|
| 235 |
+
texts = []
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
args = argparse.Namespace(
|
| 239 |
+
prompts=texts,
|
| 240 |
+
image_prompts=target_images,
|
| 241 |
+
noise_prompt_seeds=[],
|
| 242 |
+
noise_prompt_weights=[],
|
| 243 |
+
size=[width, height],
|
| 244 |
+
init_image=init_image,
|
| 245 |
+
init_weight=0.,
|
| 246 |
+
clip_model='ViT-B/32',
|
| 247 |
+
vqgan_config=f'{model}.yaml',
|
| 248 |
+
vqgan_checkpoint=f'{model}.ckpt',
|
| 249 |
+
step_size=0.1,
|
| 250 |
+
cutn=32,
|
| 251 |
+
cut_pow=1.,
|
| 252 |
+
display_freq=images_interval,
|
| 253 |
+
seed=seed,
|
| 254 |
+
)
|
| 255 |
+
from urllib.request import urlopen
|
| 256 |
+
|
| 257 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 258 |
+
print('Using device:', device)
|
| 259 |
+
if texts:
|
| 260 |
+
print('Using texts:', texts)
|
| 261 |
+
if target_images:
|
| 262 |
+
print('Using image prompts:', target_images)
|
| 263 |
+
if args.seed is None:
|
| 264 |
+
seed = torch.seed()
|
| 265 |
+
else:
|
| 266 |
+
seed = args.seed
|
| 267 |
+
torch.manual_seed(seed)
|
| 268 |
+
print('Using seed:', seed)
|
| 269 |
+
|
| 270 |
+
model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
|
| 271 |
+
perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
|
| 272 |
+
# clock=deepcopy(perceptor.visual.positional_embedding.data)
|
| 273 |
+
# perceptor.visual.positional_embedding.data = clock/clock.max()
|
| 274 |
+
# perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1)
|
| 275 |
+
|
| 276 |
+
cut_size = perceptor.visual.input_resolution
|
| 277 |
+
|
| 278 |
+
f = 2**(model.decoder.num_resolutions - 1)
|
| 279 |
+
make_cutouts = MakeCutouts(cut_size, args.cutn, cut_pow=args.cut_pow)
|
| 280 |
+
|
| 281 |
+
toksX, toksY = args.size[0] // f, args.size[1] // f
|
| 282 |
+
sideX, sideY = toksX * f, toksY * f
|
| 283 |
+
|
| 284 |
+
if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
|
| 285 |
+
e_dim = 256
|
| 286 |
+
n_toks = model.quantize.n_embed
|
| 287 |
+
z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None]
|
| 288 |
+
z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None]
|
| 289 |
+
else:
|
| 290 |
+
e_dim = model.quantize.e_dim
|
| 291 |
+
n_toks = model.quantize.n_e
|
| 292 |
+
z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
|
| 293 |
+
z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
|
| 294 |
+
# z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
|
| 295 |
+
# z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
|
| 296 |
+
|
| 297 |
+
# normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 298 |
+
# std=[0.229, 0.224, 0.225])
|
| 299 |
+
|
| 300 |
+
if args.init_image:
|
| 301 |
+
if 'http' in args.init_image:
|
| 302 |
+
img = Image.open(urlopen(args.init_image))
|
| 303 |
+
else:
|
| 304 |
+
img = Image.open(args.init_image)
|
| 305 |
+
pil_image = img.convert('RGB')
|
| 306 |
+
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
|
| 307 |
+
pil_tensor = TF.to_tensor(pil_image)
|
| 308 |
+
z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1)
|
| 309 |
+
else:
|
| 310 |
+
one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
|
| 311 |
+
# z = one_hot @ model.quantize.embedding.weight
|
| 312 |
+
if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
|
| 313 |
+
z = one_hot @ model.quantize.embed.weight
|
| 314 |
+
else:
|
| 315 |
+
z = one_hot @ model.quantize.embedding.weight
|
| 316 |
+
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
|
| 317 |
+
z = torch.rand_like(z)*2
|
| 318 |
+
z_orig = z.clone()
|
| 319 |
+
z.requires_grad_(True)
|
| 320 |
+
opt = optim.Adam([z], lr=args.step_size)
|
| 321 |
+
|
| 322 |
+
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
|
| 323 |
+
std=[0.26862954, 0.26130258, 0.27577711])
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
pMs = []
|
| 328 |
+
|
| 329 |
+
for prompt in args.prompts:
|
| 330 |
+
txt, weight, stop = parse_prompt(prompt)
|
| 331 |
+
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
|
| 332 |
+
pMs.append(Prompt(embed, weight, stop).to(device))
|
| 333 |
+
|
| 334 |
+
for prompt in args.image_prompts:
|
| 335 |
+
path, weight, stop = parse_prompt(prompt)
|
| 336 |
+
img = Image.open(path)
|
| 337 |
+
pil_image = img.convert('RGB')
|
| 338 |
+
img = resize_image(pil_image, (sideX, sideY))
|
| 339 |
+
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
|
| 340 |
+
embed = perceptor.encode_image(normalize(batch)).float()
|
| 341 |
+
pMs.append(Prompt(embed, weight, stop).to(device))
|
| 342 |
+
|
| 343 |
+
for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
|
| 344 |
+
gen = torch.Generator().manual_seed(seed)
|
| 345 |
+
embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
|
| 346 |
+
pMs.append(Prompt(embed, weight).to(device))
|
| 347 |
+
|
| 348 |
+
def synth(z):
|
| 349 |
+
if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt':
|
| 350 |
+
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1)
|
| 351 |
+
else:
|
| 352 |
+
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
|
| 353 |
+
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
|
| 354 |
+
|
| 355 |
+
@torch.no_grad()
|
| 356 |
+
def checkin(i, losses):
|
| 357 |
+
losses_str = ', '.join(f'{loss.item():g}' for loss in losses)
|
| 358 |
+
tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}')
|
| 359 |
+
out = synth(z)
|
| 360 |
+
TF.to_pil_image(out[0].cpu()).save('progress.png')
|
| 361 |
+
display.display(display.Image('progress.png'))
|
| 362 |
+
|
| 363 |
+
def ascend_txt():
|
| 364 |
+
# global i
|
| 365 |
+
out = synth(z)
|
| 366 |
+
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
|
| 367 |
+
|
| 368 |
+
result = []
|
| 369 |
+
|
| 370 |
+
if args.init_weight:
|
| 371 |
+
# result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
|
| 372 |
+
result.append(F.mse_loss(z, torch.zeros_like(z_orig)) * ((1/torch.tensor(i*2 + 1))*args.init_weight) / 2)
|
| 373 |
+
for prompt in pMs:
|
| 374 |
+
result.append(prompt(iii))
|
| 375 |
+
img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
|
| 376 |
+
img = np.transpose(img, (1, 2, 0))
|
| 377 |
+
imageio.imwrite('./steps/' + str(i) + '.png', np.array(img))
|
| 378 |
+
|
| 379 |
+
return result
|
| 380 |
+
|
| 381 |
+
def train(i):
|
| 382 |
+
opt.zero_grad()
|
| 383 |
+
lossAll = ascend_txt()
|
| 384 |
+
if i % args.display_freq == 0:
|
| 385 |
+
checkin(i, lossAll)
|
| 386 |
+
|
| 387 |
+
loss = sum(lossAll)
|
| 388 |
+
loss.backward()
|
| 389 |
+
opt.step()
|
| 390 |
+
with torch.no_grad():
|
| 391 |
+
z.copy_(z.maximum(z_min).minimum(z_max))
|
| 392 |
+
|
| 393 |
+
i = 0
|
| 394 |
+
try:
|
| 395 |
+
with tqdm() as pbar:
|
| 396 |
+
while True:
|
| 397 |
+
train(i)
|
| 398 |
+
if i == max_iterations:
|
| 399 |
+
break
|
| 400 |
+
i += 1
|
| 401 |
+
pbar.update()
|
| 402 |
+
except KeyboardInterrupt:
|
| 403 |
+
pass
|
| 404 |
+
return "./steps/300.png"
|
| 405 |
+
|
| 406 |
+
title = "VQGAN + CLIP"
|
| 407 |
+
description = "Gradio demo for VQGAN + CLIP. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
| 408 |
+
article = "<p style='text-align: center'>Originally made by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). The original BigGAN+CLIP method was by https://twitter.com/advadnoun. Added some explanations and modifications by Eleiber#8347, pooling trick by Crimeacs#8222 (https://twitter.com/EarthML1) and the GUI was made with the help of Abulafia#3734. | <a href='https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ'>Colab</a> | <a href='https://github.com/CompVis/taming-transformers'>Taming Transformers Github Repo</a> | <a href='https://github.com/openai/CLIP'>CLIP Github Repo</a></p>"
|
| 409 |
+
|
| 410 |
+
gr.Interface(
|
| 411 |
+
inference,
|
| 412 |
+
gr.inputs.Textbox(label="Input"),
|
| 413 |
+
gr.outputs.Image(type="file", label="Output"),
|
| 414 |
+
title=title,
|
| 415 |
+
description=description,
|
| 416 |
+
article=article,
|
| 417 |
+
examples=[
|
| 418 |
+
['a garden by james gurney'],
|
| 419 |
+
['coral reef city artstationHQ'],
|
| 420 |
+
['a cabin in the mountains unreal engine']
|
| 421 |
+
]
|
| 422 |
+
).launch(debug=True)
|