Spaces:
Sleeping
Sleeping
| # save as app.py | |
| import threading | |
| import gradio as gr | |
| import torch | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| TextIteratorStreamer, | |
| ) | |
| MODEL_ID = "EpistemeAI/gpt-oss-20b-RL" | |
| print("Loading tokenizer and model (this may take a while)...") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| # Always use auto mapping / dtype | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype="auto", | |
| device_map="auto", | |
| ) | |
| model.eval() | |
| print("Model loaded. Device:", next(model.parameters()).device) | |
| # --------- Helper: build prompt ---------- | |
| def build_prompt(system_message: str, history: list[dict], user_message: str) -> str: | |
| pieces = [] | |
| if system_message: | |
| pieces.append(f"<|system|>\n{system_message}\n") | |
| for turn in history: | |
| role = turn.get("role", "user") | |
| content = turn.get("content", "") | |
| pieces.append(f"<|{role}|>\n{content}\n") | |
| pieces.append(f"<|user|>\n{user_message}\n<|assistant|>\n") | |
| return "\n".join(pieces) | |
| # --------- Streaming generator ---------- | |
| def generate_stream(prompt, max_tokens, temperature, top_p): | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| input_ids = inputs["input_ids"].to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| gen_kwargs = dict( | |
| input_ids=input_ids, | |
| max_new_tokens=int(max_tokens), | |
| do_sample=True, | |
| temperature=float(temperature), | |
| top_p=float(top_p), | |
| streamer=streamer, | |
| ) | |
| thread = threading.Thread(target=model.generate, kwargs=gen_kwargs) | |
| thread.start() | |
| partial = "" | |
| for token_str in streamer: | |
| partial += token_str | |
| yield partial | |
| # --------- Gradio app logic ---------- | |
| def respond_stream(user_message, chat_history, system_message, max_tokens, temperature, top_p): | |
| history = chat_history or [] | |
| prompt = build_prompt(system_message or "", history, user_message or "") | |
| history.append({"role": "user", "content": user_message}) | |
| history.append({"role": "assistant", "content": ""}) | |
| def history_to_chatbot_rows(hist): | |
| rows = [] | |
| for item in hist: | |
| if item["role"] == "assistant": | |
| rows.append(("thinking...", item["content"] or "thinking...")) | |
| return rows or [] | |
| chatbot_rows = history_to_chatbot_rows(history[:-1]) | |
| chatbot_rows.append(("thinking...", "thinking...")) | |
| yield chatbot_rows # placeholder row | |
| for partial in generate_stream(prompt, max_tokens, temperature, top_p): | |
| chatbot_rows[-1] = ("thinking...", partial) | |
| history[-1]["content"] = partial | |
| yield chatbot_rows | |
| chatbot_rows[-1] = ("thinking...", history[-1]["content"]) | |
| yield chatbot_rows | |
| # --------- Build Gradio UI ---------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown(f"**Model:** {MODEL_ID}") | |
| with gr.Row(): | |
| chatbot = gr.Chatbot(elem_id="chatbot", label="Assistant Output (user/system hidden)").style(height=500) | |
| history_state = gr.State(value=[]) | |
| system_input = gr.Textbox(value="You are a Vibe Coder assistant.", label="System message") | |
| user_input = gr.Textbox(placeholder="Type a user message and press Send", label="Your message") | |
| max_tokens = gr.Slider(minimum=1, maximum=4000, value=800, step=1, label="Max new tokens") | |
| temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.01, label="Temperature") | |
| top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)") | |
| send_btn = gr.Button("Send") | |
| send_btn.click( | |
| fn=respond_stream, | |
| inputs=[user_input, history_state, system_input, max_tokens, temperature, top_p], | |
| outputs=[chatbot], | |
| queue=True, | |
| ) | |
| send_btn.click(lambda u, s: s, inputs=[user_input, history_state], outputs=[history_state]) | |
| send_btn.click(lambda: "", None, user_input) | |
| if __name__ == "__main__": | |
| demo.launch() | |