Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,46 @@
|
|
| 1 |
# save as app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import threading
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
-
from transformers import
|
| 6 |
-
AutoTokenizer,
|
| 7 |
-
AutoModelForCausalLM,
|
| 8 |
-
TextIteratorStreamer,
|
| 9 |
-
)
|
| 10 |
|
| 11 |
MODEL_ID = "EpistemeAI/gpt-oss-20b-RL"
|
| 12 |
|
| 13 |
print("Loading tokenizer and model (this may take a while)...")
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 15 |
|
| 16 |
-
#
|
|
|
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
MODEL_ID,
|
| 19 |
torch_dtype="auto",
|
| 20 |
device_map="auto",
|
| 21 |
)
|
| 22 |
model.eval()
|
| 23 |
-
print("Model loaded.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
pieces = []
|
| 28 |
if system_message:
|
| 29 |
pieces.append(f"<|system|>\n{system_message}\n")
|
|
@@ -34,10 +51,19 @@ def build_prompt(system_message: str, history: list[dict], user_message: str) ->
|
|
| 34 |
pieces.append(f"<|user|>\n{user_message}\n<|assistant|>\n")
|
| 35 |
return "\n".join(pieces)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
def generate_stream(prompt, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 43 |
|
|
@@ -58,56 +84,119 @@ def generate_stream(prompt, max_tokens, temperature, top_p):
|
|
| 58 |
partial += token_str
|
| 59 |
yield partial
|
| 60 |
|
| 61 |
-
# --------- Gradio app logic ----------
|
| 62 |
-
def respond_stream(user_message, chat_history, system_message, max_tokens, temperature, top_p):
|
| 63 |
-
history = chat_history or []
|
| 64 |
-
prompt = build_prompt(system_message or "", history, user_message or "")
|
| 65 |
-
|
| 66 |
-
history.append({"role": "user", "content": user_message})
|
| 67 |
-
history.append({"role": "assistant", "content": ""})
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
yield chatbot_rows # placeholder row
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
-
chatbot_rows[-1] = ("thinking...", history[-1]["content"])
|
| 86 |
-
yield chatbot_rows
|
| 87 |
|
| 88 |
-
#
|
| 89 |
with gr.Blocks() as demo:
|
| 90 |
-
gr.Markdown(f"**Model:** {MODEL_ID}")
|
| 91 |
-
with gr.Row():
|
| 92 |
-
chatbot = gr.Chatbot(elem_id="chatbot", label="Assistant Output (user/system hidden)").style(height=500)
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
user_input = gr.Textbox(placeholder="Type a user message and press Send", label="Your message")
|
| 97 |
-
max_tokens = gr.Slider(minimum=1, maximum=4000, value=800, step=1, label="Max new tokens")
|
| 98 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.01, label="Temperature")
|
| 99 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
| 100 |
-
send_btn = gr.Button("Send")
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
send_btn.click(
|
| 103 |
fn=respond_stream,
|
| 104 |
-
inputs=[user_input,
|
| 105 |
outputs=[chatbot],
|
| 106 |
queue=True,
|
| 107 |
)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
if __name__ == "__main__":
|
| 113 |
demo.launch()
|
|
|
|
| 1 |
# save as app.py
|
| 2 |
+
"""
|
| 3 |
+
Gradio streaming chat that hides user/system text.
|
| 4 |
+
Left-side messages are always "thinking..." (literal).
|
| 5 |
+
Right-side shows the assistant output streamed as it is generated.
|
| 6 |
+
|
| 7 |
+
Requirements:
|
| 8 |
+
- transformers
|
| 9 |
+
- accelerate (recommended)
|
| 10 |
+
- gradio
|
| 11 |
+
- torch
|
| 12 |
+
"""
|
| 13 |
import threading
|
| 14 |
+
import time
|
| 15 |
import gradio as gr
|
| 16 |
import torch
|
| 17 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
MODEL_ID = "EpistemeAI/gpt-oss-20b-RL"
|
| 20 |
|
| 21 |
print("Loading tokenizer and model (this may take a while)...")
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 23 |
|
| 24 |
+
# ALWAYS use auto for dtype & device_map as requested
|
| 25 |
+
# This will let HF/accelerate place weights across available devices
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
MODEL_ID,
|
| 28 |
torch_dtype="auto",
|
| 29 |
device_map="auto",
|
| 30 |
)
|
| 31 |
model.eval()
|
| 32 |
+
print("Model loaded. Example param device:", next(model.parameters()).device)
|
| 33 |
+
|
| 34 |
+
# Global history (real content). Stored as list of {"role": "user"|"assistant"|"system", "content": "..."}
|
| 35 |
+
GLOBAL_HISTORY = []
|
| 36 |
+
HISTORY_LOCK = threading.Lock()
|
| 37 |
+
|
| 38 |
|
| 39 |
+
def build_prompt(system_message: str, history: list, user_message: str) -> str:
|
| 40 |
+
"""
|
| 41 |
+
Build the model prompt in your preferred format.
|
| 42 |
+
Adjust this function if your model expects a different conversation format.
|
| 43 |
+
"""
|
| 44 |
pieces = []
|
| 45 |
if system_message:
|
| 46 |
pieces.append(f"<|system|>\n{system_message}\n")
|
|
|
|
| 51 |
pieces.append(f"<|user|>\n{user_message}\n<|assistant|>\n")
|
| 52 |
return "\n".join(pieces)
|
| 53 |
|
| 54 |
+
|
| 55 |
+
def generate_stream(prompt: str, max_tokens: int, temperature: float, top_p: float):
|
| 56 |
+
"""
|
| 57 |
+
Yields partial strings as the model generates tokens using TextIteratorStreamer.
|
| 58 |
+
"""
|
| 59 |
+
# Tokenize (we avoid forcing a single-device .to(...) in case of HF sharded device_map)
|
| 60 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 61 |
+
# Move input_ids to same device as a model parameter (works with many configs)
|
| 62 |
+
try:
|
| 63 |
+
input_ids = inputs["input_ids"].to(next(model.parameters()).device)
|
| 64 |
+
except Exception:
|
| 65 |
+
# Fallback: do not move if that fails (accelerate may handle placement)
|
| 66 |
+
input_ids = inputs["input_ids"]
|
| 67 |
|
| 68 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 69 |
|
|
|
|
| 84 |
partial += token_str
|
| 85 |
yield partial
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
def make_display_messages_from_history(real_history: list, current_partial: str | None):
|
| 89 |
+
"""
|
| 90 |
+
Convert the internal 'real_history' (which contains real user & assistant content)
|
| 91 |
+
into the list of openai-style message dicts that Gradio Chatbot (type="messages")
|
| 92 |
+
expects. Every non-assistant message is replaced with a literal "thinking...".
|
| 93 |
+
For each assistant exchange we produce:
|
| 94 |
+
{"role":"user", "content":"thinking..."}
|
| 95 |
+
{"role":"assistant", "content": "<assistant content or partial stream>"}
|
| 96 |
+
The UI will therefore show the left side text "thinking..." and right side the assistant.
|
| 97 |
+
"""
|
| 98 |
+
msgs = []
|
| 99 |
+
# Walk the real history and whenever we hit an assistant turn, pair it with a thinking user
|
| 100 |
+
i = 0
|
| 101 |
+
while i < len(real_history):
|
| 102 |
+
item = real_history[i]
|
| 103 |
+
if item["role"] == "assistant":
|
| 104 |
+
# the user message that caused this assistant reply is typically just before it,
|
| 105 |
+
# but we hide the real user content and show "thinking..." instead.
|
| 106 |
+
msgs.append({"role": "user", "content": "thinking..."})
|
| 107 |
+
msgs.append({"role": "assistant", "content": item.get("content", "") or "thinking..."})
|
| 108 |
+
i += 1
|
| 109 |
+
|
| 110 |
+
# If a current_partial exists (we're streaming a new assistant response),
|
| 111 |
+
# ensure it's reflected as the last assistant message (with a preceding "thinking...")
|
| 112 |
+
if current_partial is not None:
|
| 113 |
+
# If the last two entries are already the streaming pair, replace them; otherwise append new
|
| 114 |
+
if msgs and msgs[-1]["role"] == "assistant":
|
| 115 |
+
msgs[-1]["content"] = current_partial
|
| 116 |
+
else:
|
| 117 |
+
msgs.append({"role": "user", "content": "thinking..."})
|
| 118 |
+
msgs.append({"role": "assistant", "content": current_partial})
|
| 119 |
+
return msgs
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def respond_stream(user_message, system_message, max_tokens, temperature, top_p):
|
| 123 |
+
"""
|
| 124 |
+
Gradio streaming function that yields successive message-lists (OpenAI-style dicts).
|
| 125 |
+
It mutates GLOBAL_HISTORY to store the true conversation, but the UI only ever sees
|
| 126 |
+
'thinking...' in non-assistant slots and the assistant's streamed content on the right.
|
| 127 |
+
"""
|
| 128 |
+
# Append the real user turn and an empty assistant placeholder to GLOBAL_HISTORY
|
| 129 |
+
with HISTORY_LOCK:
|
| 130 |
+
GLOBAL_HISTORY.append({"role": "user", "content": user_message})
|
| 131 |
+
GLOBAL_HISTORY.append({"role": "assistant", "content": ""}) # placeholder for streaming
|
| 132 |
+
# create a shallow copy for local read
|
| 133 |
+
local_history = list(GLOBAL_HISTORY)
|
| 134 |
+
|
| 135 |
+
# initial UI placeholder: show existing assistant rows and the new placeholder
|
| 136 |
+
displayed = make_display_messages_from_history(local_history, current_partial="thinking...")
|
| 137 |
+
yield displayed
|
| 138 |
+
|
| 139 |
+
# Build model prompt from the real history (exclude the last assistant placeholder content)
|
| 140 |
+
# We pass the actual global history (safe to read under lock copy)
|
| 141 |
+
with HISTORY_LOCK:
|
| 142 |
+
# Send a snapshot (exclude the last assistant placeholder since it's empty)
|
| 143 |
+
prompt_history = [h for h in GLOBAL_HISTORY[:-1] if h.get("role")]
|
| 144 |
+
prompt = build_prompt(system_message or "", prompt_history, user_message or "")
|
| 145 |
+
|
| 146 |
+
# Stream generation
|
| 147 |
+
for partial in generate_stream(prompt, max_tokens, temperature, top_p):
|
| 148 |
+
# Update the global assistant placeholder with the partial so future turns keep context
|
| 149 |
+
with HISTORY_LOCK:
|
| 150 |
+
# Update the last assistant placeholder
|
| 151 |
+
if GLOBAL_HISTORY and GLOBAL_HISTORY[-1]["role"] == "assistant":
|
| 152 |
+
GLOBAL_HISTORY[-1]["content"] = partial
|
| 153 |
+
current_snapshot = list(GLOBAL_HISTORY)
|
| 154 |
|
| 155 |
+
displayed = make_display_messages_from_history(current_snapshot, current_partial=partial)
|
| 156 |
+
yield displayed
|
|
|
|
| 157 |
|
| 158 |
+
# final sync: ensure the assistant content is finalized in GLOBAL_HISTORY (already done)
|
| 159 |
+
with HISTORY_LOCK:
|
| 160 |
+
final_snapshot = list(GLOBAL_HISTORY)
|
| 161 |
+
displayed = make_display_messages_from_history(final_snapshot, current_partial=final_snapshot[-1].get("content", ""))
|
| 162 |
+
yield displayed
|
| 163 |
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
# --- Gradio UI ---
|
| 166 |
with gr.Blocks() as demo:
|
| 167 |
+
gr.Markdown(f"**Model:** {MODEL_ID} — (UI hides user/system messages; left column shows 'thinking...')")
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
# Chatbot expects a list of {"role":.., "content":..} dicts when type="messages"
|
| 170 |
+
chatbot = gr.Chatbot(elem_id="chatbot", label="Assistant (user/system hidden)", type="messages", height=560)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
with gr.Row():
|
| 173 |
+
with gr.Column(scale=4):
|
| 174 |
+
user_input = gr.Textbox(placeholder="Type a user message and press Send", label="Your message")
|
| 175 |
+
with gr.Column(scale=2):
|
| 176 |
+
system_input = gr.Textbox(value="You are a Vibe Coder assistant.", label="System message")
|
| 177 |
+
max_tokens = gr.Slider(minimum=1, maximum=4000, value=800, step=1, label="Max new tokens")
|
| 178 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.01, label="Temperature")
|
| 179 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
| 180 |
+
send_btn = gr.Button("Send")
|
| 181 |
+
|
| 182 |
+
# Hook the streaming respond function. Gradio will accept a generator that yields message lists.
|
| 183 |
send_btn.click(
|
| 184 |
fn=respond_stream,
|
| 185 |
+
inputs=[user_input, system_input, max_tokens, temperature, top_p],
|
| 186 |
outputs=[chatbot],
|
| 187 |
queue=True,
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# Optional controls
|
| 191 |
+
clear_btn = gr.Button("Reset conversation")
|
| 192 |
+
def reset_all():
|
| 193 |
+
with HISTORY_LOCK:
|
| 194 |
+
GLOBAL_HISTORY.clear()
|
| 195 |
+
return []
|
| 196 |
+
clear_btn.click(fn=reset_all, inputs=None, outputs=[chatbot])
|
| 197 |
+
|
| 198 |
+
gr.Markdown("Note: model loading uses `device_map='auto'` and `torch_dtype='auto'`. "
|
| 199 |
+
"If you run into out-of-memory problems on small GPUs, consider running on a machine with more memory or using model parallel tools.")
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
demo.launch()
|