Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,189 +1,21 @@
|
|
| 1 |
-
# save as app.py
|
| 2 |
-
"""
|
| 3 |
-
Gradio streaming chat where:
|
| 4 |
-
- user messages are visible in the UI,
|
| 5 |
-
- system messages are hidden (kept for context),
|
| 6 |
-
- assistant output is streamed and updates in-place.
|
| 7 |
-
- full back-and-forth memory between turns.
|
| 8 |
|
| 9 |
-
|
| 10 |
-
pip install torch transformers gradio
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
-
import threading
|
| 14 |
import gradio as gr
|
| 15 |
-
import torch
|
| 16 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 17 |
-
|
| 18 |
-
MODEL_ID = "EpistemeAI/metatune-gpt20b-R0"
|
| 19 |
-
|
| 20 |
-
print("Loading tokenizer and model (this may take a while)...")
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 22 |
-
|
| 23 |
-
# Use auto dtype & device mapping
|
| 24 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
-
MODEL_ID,
|
| 26 |
-
torch_dtype="auto",
|
| 27 |
-
device_map="auto",
|
| 28 |
-
)
|
| 29 |
-
model.eval()
|
| 30 |
-
print("Model loaded. Example param device:", next(model.parameters()).device)
|
| 31 |
-
|
| 32 |
-
# Thread-safe global history
|
| 33 |
-
GLOBAL_HISTORY = [] # list of {"role": "system"|"user"|"assistant", "content": "..."}
|
| 34 |
-
HISTORY_LOCK = threading.Lock()
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def build_prompt(system_message: str, history: list, user_message: str) -> str:
|
| 38 |
-
"""
|
| 39 |
-
Build prompt in the model's expected format. Adjust as needed.
|
| 40 |
-
"""
|
| 41 |
-
pieces = []
|
| 42 |
-
if system_message:
|
| 43 |
-
pieces.append(f"<|system|>\n{system_message}\n")
|
| 44 |
-
for turn in history:
|
| 45 |
-
role = turn.get("role", "user")
|
| 46 |
-
content = turn.get("content", "")
|
| 47 |
-
pieces.append(f"<|{role}|>\n{content}\n")
|
| 48 |
-
pieces.append(f"<|user|>\n{user_message}\n<|assistant|>\n")
|
| 49 |
-
return "\n".join(pieces)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def generate_stream(prompt: str, max_tokens: int, temperature: float, top_p: float):
|
| 53 |
-
"""
|
| 54 |
-
Stream partial strings via TextIteratorStreamer.
|
| 55 |
-
"""
|
| 56 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 57 |
-
try:
|
| 58 |
-
input_ids = inputs["input_ids"].to(next(model.parameters()).device)
|
| 59 |
-
except Exception:
|
| 60 |
-
input_ids = inputs["input_ids"]
|
| 61 |
-
|
| 62 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 63 |
-
|
| 64 |
-
gen_kwargs = dict(
|
| 65 |
-
input_ids=input_ids,
|
| 66 |
-
max_new_tokens=int(max_tokens),
|
| 67 |
-
do_sample=True,
|
| 68 |
-
temperature=float(temperature),
|
| 69 |
-
top_p=float(top_p),
|
| 70 |
-
streamer=streamer,
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
|
| 74 |
-
thread.start()
|
| 75 |
-
|
| 76 |
-
partial = ""
|
| 77 |
-
for token_str in streamer:
|
| 78 |
-
partial += token_str
|
| 79 |
-
yield partial
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def visible_messages_from_history(real_history: list, streaming_partial: str | None):
|
| 83 |
-
"""
|
| 84 |
-
Convert internal history into Gradio-visible messages.
|
| 85 |
-
- Show user messages.
|
| 86 |
-
- Show assistant messages (partial or final).
|
| 87 |
-
- Hide system messages.
|
| 88 |
-
"""
|
| 89 |
-
msgs = []
|
| 90 |
-
for entry in real_history:
|
| 91 |
-
role = entry.get("role")
|
| 92 |
-
content = entry.get("content", "")
|
| 93 |
-
if role == "system":
|
| 94 |
-
continue
|
| 95 |
-
msgs.append({"role": role, "content": content or ("thinking..." if role == "assistant" else "")})
|
| 96 |
-
|
| 97 |
-
if streaming_partial is not None:
|
| 98 |
-
if msgs and msgs[-1]["role"] == "assistant":
|
| 99 |
-
msgs[-1]["content"] = streaming_partial
|
| 100 |
-
else:
|
| 101 |
-
msgs.append({"role": "assistant", "content": streaming_partial})
|
| 102 |
-
|
| 103 |
-
return msgs
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def respond_stream(user_message, system_message, max_tokens, temperature, top_p, history_state):
|
| 107 |
-
"""
|
| 108 |
-
Gradio streaming handler with persistent memory.
|
| 109 |
-
"""
|
| 110 |
-
if history_state is None:
|
| 111 |
-
history_state = []
|
| 112 |
-
|
| 113 |
-
# Sync local and global histories (optional global memory)
|
| 114 |
-
with HISTORY_LOCK:
|
| 115 |
-
GLOBAL_HISTORY[:] = history_state
|
| 116 |
-
|
| 117 |
-
# Add the new user message and placeholder assistant
|
| 118 |
-
with HISTORY_LOCK:
|
| 119 |
-
if system_message:
|
| 120 |
-
GLOBAL_HISTORY.append({"role": "system", "content": system_message})
|
| 121 |
-
GLOBAL_HISTORY.append({"role": "user", "content": user_message})
|
| 122 |
-
GLOBAL_HISTORY.append({"role": "assistant", "content": ""})
|
| 123 |
-
snapshot = list(GLOBAL_HISTORY)
|
| 124 |
-
|
| 125 |
-
# Show initial "thinking..." state
|
| 126 |
-
initial_display = visible_messages_from_history(snapshot, streaming_partial="thinking...")
|
| 127 |
-
yield initial_display, snapshot
|
| 128 |
-
|
| 129 |
-
# Build prompt excluding assistant placeholder
|
| 130 |
-
with HISTORY_LOCK:
|
| 131 |
-
prompt_history = [h for h in GLOBAL_HISTORY[:-1]]
|
| 132 |
-
prompt = build_prompt(system_message or "", prompt_history, user_message or "")
|
| 133 |
-
|
| 134 |
-
# Stream generation and update assistant output
|
| 135 |
-
for partial in generate_stream(prompt, max_tokens, temperature, top_p):
|
| 136 |
-
with HISTORY_LOCK:
|
| 137 |
-
if GLOBAL_HISTORY and GLOBAL_HISTORY[-1]["role"] == "assistant":
|
| 138 |
-
GLOBAL_HISTORY[-1]["content"] = partial
|
| 139 |
-
snapshot = list(GLOBAL_HISTORY)
|
| 140 |
-
display = visible_messages_from_history(snapshot, streaming_partial=partial)
|
| 141 |
-
yield display, snapshot
|
| 142 |
-
|
| 143 |
-
# Final display
|
| 144 |
-
with HISTORY_LOCK:
|
| 145 |
-
final_snapshot = list(GLOBAL_HISTORY)
|
| 146 |
-
final_display = visible_messages_from_history(final_snapshot, streaming_partial=final_snapshot[-1].get("content", ""))
|
| 147 |
-
yield final_display, final_snapshot
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
def reset_all():
|
| 151 |
-
with HISTORY_LOCK:
|
| 152 |
-
GLOBAL_HISTORY.clear()
|
| 153 |
-
return [], []
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
# --- Gradio UI ---
|
| 157 |
-
with gr.Blocks() as demo:
|
| 158 |
-
gr.Markdown(f"**Model:** {MODEL_ID} — (system messages hidden; user visible)")
|
| 159 |
-
|
| 160 |
-
chatbot = gr.Chatbot(elem_id="chatbot", label="Chat", type="messages", height=560)
|
| 161 |
-
history_state = gr.State([])
|
| 162 |
-
|
| 163 |
-
with gr.Row():
|
| 164 |
-
with gr.Column(scale=4):
|
| 165 |
-
user_input = gr.Textbox(placeholder="Type a message and press Send", label="Your message")
|
| 166 |
-
with gr.Column(scale=2):
|
| 167 |
-
system_input = gr.Textbox(value="You are a Vibe Coder assistant.", label="System message (hidden)")
|
| 168 |
-
max_tokens = gr.Slider(minimum=1, maximum=4000, value=800, step=1, label="Max new tokens")
|
| 169 |
-
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.01, label="Temperature")
|
| 170 |
-
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
| 171 |
-
send_btn = gr.Button("Send")
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
queue=True,
|
| 178 |
-
)
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
|
| 184 |
-
"Notes: model loading uses `device_map='auto'` and `torch_dtype='auto'`. "
|
| 185 |
-
"If running multi-worker (gunicorn) you will need an external history store (Redis/DB)."
|
| 186 |
-
)
|
| 187 |
|
| 188 |
-
|
| 189 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
checkpoint = "EpistemeAI/metatune-20b"
|
| 6 |
+
device = "cpu" # "cuda" or "cpu"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def predict(message, history):
|
| 11 |
+
history.append({"role": "user", "content": message})
|
| 12 |
+
input_text = tokenizer.apply_chat_template(history, tokenize=False)
|
| 13 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 14 |
+
outputs = model.generate(inputs, max_new_tokens=64000, temperature=0.9, top_p=0.9, do_sample=True)
|
| 15 |
+
decoded = tokenizer.decode(outputs[0])
|
| 16 |
+
response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
|
| 17 |
+
return response
|
| 18 |
|
| 19 |
+
demo = gr.ChatInterface(predict, type="messages")
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
demo.launch()
|
|
|