Spaces:
Paused
Paused
File size: 1,436 Bytes
d45fd05 dedd5b6 ef5c5ef d45fd05 030d3cf dedd5b6 d45fd05 8595a86 d45fd05 ef5c5ef d45fd05 4995664 d45fd05 dedd5b6 d45fd05 dedd5b6 d45fd05 030d3cf d45fd05 dedd5b6 d45fd05 030d3cf d45fd05 dedd5b6 d45fd05 dedd5b6 030d3cf d45fd05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import os
import gradio as gr
from langchain.agents import create_agent
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langgraph.checkpoint.memory import InMemorySaver
from dotenv import load_dotenv
class GradioAgent:
def __init__(self):
self.agent = self.__create_agent()
def inicialize(self):
chatbot = gr.ChatInterface(
self._respond,
type="messages"
)
with gr.Blocks() as demo:
chatbot.render()
demo.launch()
def __create_agent(self):
hf_model = HuggingFaceEndpoint(
repo_id="Qwen/Qwen3-30B-A3B-Instruct-2507",
task="text-generation",
provider="auto",
huggingfacehub_api_token=os.getenv("HF_TOKEN")
)
llm = ChatHuggingFace(llm=hf_model)
return create_agent(
tools=[],
model=llm,
checkpointer=InMemorySaver(),
system_prompt="You are a helpful and usefull assistant."
)
def _respond(
self,
message,
history
):
result = self.agent.invoke(
{"messages": [{"role": "user", "content": message}]},
{"configurable": {"thread_id": "1"}},
)
output = result['messages'][-1].content
yield output
if __name__ == "__main__":
load_dotenv()
gradio = GradioAgent()
gradio.inicialize()
|