Eurico149 commited on
Commit
16fb597
·
1 Parent(s): b0df00c

feat: using a larger model on rag agent

Browse files
Files changed (2) hide show
  1. agents/BookRetriverAgent.py +6 -4
  2. app.py +3 -5
agents/BookRetriverAgent.py CHANGED
@@ -1,4 +1,7 @@
1
  import os
 
 
 
2
  from tools import get_retrieve_book_context_tool
3
  from langchain.agents import create_agent
4
  from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
@@ -13,7 +16,7 @@ def get_book_retriver_agent():
13
 
14
  def generate_agent(vector_store):
15
  hf_model = HuggingFaceEndpoint(
16
- repo_id="Qwen/Qwen3-VL-8B-Instruct",
17
  task="text-generation",
18
  provider="auto",
19
  huggingfacehub_api_token=os.getenv("HF_TOKEN")
@@ -24,13 +27,12 @@ def generate_agent(vector_store):
24
  prompt = """
25
  You are a knowledge retriever agent, you must always provide context related answers, using the tools provided.
26
  You must always use this tool for reliable information to answer any query.
27
- Always prioritize data coming from your tools.
28
- Dont use the same tool more than once.
29
  """
30
  return create_agent(
31
  model=llm,
32
  tools=tools,
33
- system_prompt=prompt
34
  )
35
 
36
  def initiate_vector_store():
 
1
  import os
2
+
3
+ from langgraph.checkpoint.memory import InMemorySaver
4
+
5
  from tools import get_retrieve_book_context_tool
6
  from langchain.agents import create_agent
7
  from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
 
16
 
17
  def generate_agent(vector_store):
18
  hf_model = HuggingFaceEndpoint(
19
+ repo_id="Qwen/Qwen3-30B-A3B-Instruct-2507",
20
  task="text-generation",
21
  provider="auto",
22
  huggingfacehub_api_token=os.getenv("HF_TOKEN")
 
27
  prompt = """
28
  You are a knowledge retriever agent, you must always provide context related answers, using the tools provided.
29
  You must always use this tool for reliable information to answer any query.
30
+ Dont try to elaborate your answers, always prioritize data coming from your tools.
 
31
  """
32
  return create_agent(
33
  model=llm,
34
  tools=tools,
35
+ system_prompt=prompt,
36
  )
37
 
38
  def initiate_vector_store():
app.py CHANGED
@@ -43,11 +43,9 @@ class GradioAgent:
43
  ]
44
 
45
  prompt = (
46
- "You are a smart and friendly coordinator agent. "
47
- "You have access to a collection of tools and specialized agents that help you provide accurate and reliable information. "
48
- "You always communicate clearly, in a friendly and engaging tone using short paragraphs, smooth transitions, and light emoji to make your answers pleasant and easy to read. "
49
- "Keep the technical accuracy of your responses, but present them in a natural, conversational way. "
50
- "Your main goal is to generate user-friendly and informative answers based on the data you gather."
51
  )
52
 
53
  return create_agent(
 
43
  ]
44
 
45
  prompt = (
46
+ "You are a helpful and usefull coordinator agent, you have access to a collection of tools and"
47
+ " agents to help you with reliable data to your query's. "
48
+ "One of your main objectives is to generate user friendly answers based on the information you have."
 
 
49
  )
50
 
51
  return create_agent(