Spaces:
Runtime error
Runtime error
RasmusToivanen
commited on
Commit
·
c2ae77e
1
Parent(s):
b8abbf2
add files
Browse files- README.md +36 -4
- app.py +321 -0
- examples/.gitattributes +3 -0
- examples/video_1.json +1 -0
- examples/video_1.mp4 +3 -0
- examples/video_2.json +1 -0
- examples/video_2.mp4 +3 -0
- packages.txt +1 -0
- requirements.txt +16 -0
README.md
CHANGED
|
@@ -1,13 +1,45 @@
|
|
| 1 |
---
|
| 2 |
title: Fin Eng ASR Autosubtitles
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.0.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Fin Eng ASR Autosubtitles
|
| 3 |
+
emoji: 🌍
|
| 4 |
+
colorFrom: indigo
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.0.24
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
+
|
| 15 |
+
We use Opus-MT models in the code. Here is the citations
|
| 16 |
+
```
|
| 17 |
+
@inproceedings{tiedemann-thottingal-2020-opus,
|
| 18 |
+
title = "{OPUS}-{MT} {--} Building open translation services for the World",
|
| 19 |
+
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
|
| 20 |
+
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
|
| 21 |
+
month = nov,
|
| 22 |
+
year = "2020",
|
| 23 |
+
address = "Lisboa, Portugal",
|
| 24 |
+
publisher = "European Association for Machine Translation",
|
| 25 |
+
url = "https://aclanthology.org/2020.eamt-1.61",
|
| 26 |
+
pages = "479--480",
|
| 27 |
+
}
|
| 28 |
+
@inproceedings{tiedemann-2020-tatoeba,
|
| 29 |
+
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
|
| 30 |
+
author = {Tiedemann, J{\"o}rg},
|
| 31 |
+
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
|
| 32 |
+
month = nov,
|
| 33 |
+
year = "2020",
|
| 34 |
+
address = "Online",
|
| 35 |
+
publisher = "Association for Computational Linguistics",
|
| 36 |
+
url = "https://aclanthology.org/2020.wmt-1.139",
|
| 37 |
+
pages = "1174--1182",
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
Wav2vec2:
|
| 41 |
+
BAEVSKI, Alexei, et al. wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in Neural Information Processing Systems, 2020, 33: 12449-12460.
|
| 42 |
+
|
| 43 |
+
T5:
|
| 44 |
+
RAFFEL, Colin, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 2020, 21.140: 1-67.
|
| 45 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from difflib import Differ
|
| 4 |
+
import ffmpeg
|
| 5 |
+
import os
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import time
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 9 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import re
|
| 12 |
+
import time
|
| 13 |
+
import os
|
| 14 |
+
from fuzzywuzzy import fuzz
|
| 15 |
+
from fastT5 import export_and_get_onnx_model
|
| 16 |
+
import torch
|
| 17 |
+
from transformers import pipeline
|
| 18 |
+
|
| 19 |
+
MODEL = "Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish"
|
| 20 |
+
marian_nmt_model = "Helsinki-NLP/opus-mt-tc-big-fi-en"
|
| 21 |
+
tokenizer_marian = MarianTokenizer.from_pretrained(marian_nmt_model)
|
| 22 |
+
model = MarianMTModel.from_pretrained(marian_nmt_model)
|
| 23 |
+
|
| 24 |
+
cuda = torch.device(
|
| 25 |
+
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
| 26 |
+
sr_pipeline_device = 0 if torch.cuda.is_available() else -1
|
| 27 |
+
|
| 28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
speech_recognizer = pipeline(
|
| 30 |
+
task="automatic-speech-recognition",
|
| 31 |
+
model=f'{MODEL}',
|
| 32 |
+
tokenizer=f'{MODEL}',
|
| 33 |
+
framework="pt",
|
| 34 |
+
device=sr_pipeline_device,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
model_checkpoint = 'Finnish-NLP/t5-small-nl24-casing-punctuation-correction'
|
| 38 |
+
tokenizer_t5 = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 39 |
+
model_t5 = export_and_get_onnx_model(model_checkpoint)
|
| 40 |
+
#model_t5 = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, from_flax=False, torch_dtype=torch.float32).to(device)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
videos_out_path = Path("./videos_out")
|
| 46 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
| 47 |
+
|
| 48 |
+
samples_data = sorted(Path('examples').glob('*.json'))
|
| 49 |
+
SAMPLES = []
|
| 50 |
+
for file in samples_data:
|
| 51 |
+
with open(file) as f:
|
| 52 |
+
sample = json.load(f)
|
| 53 |
+
SAMPLES.append(sample)
|
| 54 |
+
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
|
| 55 |
+
|
| 56 |
+
total_inferences_since_reboot = 0
|
| 57 |
+
total_cuts_since_reboot = 0
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
async def speech_to_text(video_file_path):
|
| 63 |
+
"""
|
| 64 |
+
Takes a video path to convert to audio, transcribe audio channel to text timestamps
|
| 65 |
+
|
| 66 |
+
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
| 67 |
+
"""
|
| 68 |
+
global total_inferences_since_reboot
|
| 69 |
+
if(video_file_path == None):
|
| 70 |
+
raise ValueError("Error no video input")
|
| 71 |
+
|
| 72 |
+
video_path = Path(video_file_path)
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
# convert video to audio 16k using PIPE to audio_memory
|
| 76 |
+
audio_memory, _ = ffmpeg.input(video_path).output(
|
| 77 |
+
'-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
|
| 78 |
+
except Exception as e:
|
| 79 |
+
raise RuntimeError("Error converting video to audio")
|
| 80 |
+
|
| 81 |
+
last_time = time.time()
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
|
| 85 |
+
output = speech_recognizer(
|
| 86 |
+
audio_memory, return_timestamps="word", chunk_length_s=10, stride_length_s=(4, 2))
|
| 87 |
+
|
| 88 |
+
transcription = output["text"].lower()
|
| 89 |
+
|
| 90 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
|
| 91 |
+
for chunk in output['chunks']]
|
| 92 |
+
input_ids = tokenizer_t5(transcription, return_tensors="pt").input_ids.to(device)
|
| 93 |
+
outputs = model_t5.generate(input_ids, max_length=128)
|
| 94 |
+
case_corrected_text = tokenizer_t5.decode(outputs[0], skip_special_tokens=True)
|
| 95 |
+
translated = model.generate(**tokenizer_marian([case_corrected_text], return_tensors="pt", padding=True))
|
| 96 |
+
translated_plain = "".join([tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated])
|
| 97 |
+
|
| 98 |
+
for timestamp in timestamps:
|
| 99 |
+
total_inferences_since_reboot += 1
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
df = pd.DataFrame(timestamps, columns = ['word', 'start','stop'])
|
| 103 |
+
|
| 104 |
+
df['start'] = df['start'].astype('float16')
|
| 105 |
+
df['stop'] = df['stop'].astype('float16')
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
print("\n\ntotal_inferences_since_reboot: ",
|
| 109 |
+
total_inferences_since_reboot, "\n\n")
|
| 110 |
+
return (transcription, transcription, timestamps,df, case_corrected_text, translated_plain)
|
| 111 |
+
except Exception as e:
|
| 112 |
+
raise RuntimeError("Error Running inference with local model", e)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def create_srt(text_out_t5, df):
|
| 116 |
+
|
| 117 |
+
df.columns = ['word', 'start', 'stop']
|
| 118 |
+
|
| 119 |
+
df_sentences = pd.DataFrame(columns=['sentence','start','stop','translated'])
|
| 120 |
+
found_match_value = 0
|
| 121 |
+
found_match_word = ""
|
| 122 |
+
|
| 123 |
+
t5_sentences = re.split('[.]|[?]|[!]', text_out_t5)
|
| 124 |
+
t5_sentences = [sentence.replace('.','').replace('?','').replace('!','') for sentence in t5_sentences if sentence]
|
| 125 |
+
|
| 126 |
+
for i, sentence in enumerate(t5_sentences):
|
| 127 |
+
sentence = sentence.lower().split(" ")
|
| 128 |
+
if i == 0:
|
| 129 |
+
df_subset = df[df['stop'] <10]
|
| 130 |
+
start = df.iloc[0]['start']
|
| 131 |
+
|
| 132 |
+
for j, word in enumerate(df_subset['word']):
|
| 133 |
+
temp_value = fuzz.partial_ratio((word), sentence[-1])
|
| 134 |
+
if temp_value > found_match_value:
|
| 135 |
+
found_match_value = temp_value
|
| 136 |
+
found_match_word = word
|
| 137 |
+
|
| 138 |
+
stop = df_subset[df_subset['word'] == found_match_word]
|
| 139 |
+
|
| 140 |
+
translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True))
|
| 141 |
+
translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]
|
| 142 |
+
|
| 143 |
+
dict_to_add = {
|
| 144 |
+
'sentence': t5_sentences[i],
|
| 145 |
+
'start': start,
|
| 146 |
+
'stop': stop.iloc[0]['stop'],
|
| 147 |
+
'translated': translated_plain[0]
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
df_sentences = df_sentences.append(dict_to_add, ignore_index=True)
|
| 151 |
+
new_start = df.iloc[stop.index.values[0]+1]['start']
|
| 152 |
+
new_stop = new_start + 10
|
| 153 |
+
else:
|
| 154 |
+
found_match_value = 0
|
| 155 |
+
found_match_word = ""
|
| 156 |
+
|
| 157 |
+
df_subset = df[(df['start'] >= new_start) & (df['stop'] <= new_stop)]
|
| 158 |
+
start = df_subset.iloc[0]['start']
|
| 159 |
+
|
| 160 |
+
for j, word in enumerate(df_subset['word']):
|
| 161 |
+
temp_value = fuzz.partial_ratio((word), sentence[-1])
|
| 162 |
+
if temp_value > found_match_value:
|
| 163 |
+
found_match_value = temp_value
|
| 164 |
+
found_match_word = word
|
| 165 |
+
stop = df_subset[df_subset['word'] == found_match_word]
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True))
|
| 169 |
+
translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
dict_to_add = {
|
| 173 |
+
'sentence': t5_sentences[i],
|
| 174 |
+
'start': start,
|
| 175 |
+
'stop': stop.iloc[0]['stop'],
|
| 176 |
+
'translated': translated_plain[0]
|
| 177 |
+
}
|
| 178 |
+
df_sentences = df_sentences.append(dict_to_add, ignore_index=True)
|
| 179 |
+
try:
|
| 180 |
+
new_start = df.iloc[stop.index.values[0]+1]['start']
|
| 181 |
+
new_stop = new_start + 10
|
| 182 |
+
except Exception as e:
|
| 183 |
+
df_sentences = df_sentences.iloc[0:i+1]
|
| 184 |
+
|
| 185 |
+
return df_sentences
|
| 186 |
+
|
| 187 |
+
def create_srt_and_burn(video_in, srt_sentences):
|
| 188 |
+
srt_sentences.columns = ['sentence', 'start', 'stop','translated']
|
| 189 |
+
srt_sentences.dropna(inplace=True)
|
| 190 |
+
srt_sentences['start'] = srt_sentences['start'].astype('float')
|
| 191 |
+
srt_sentences['stop'] = srt_sentences['stop'].astype('float')
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
with open('testi.srt','w') as file:
|
| 195 |
+
for i in range(len(srt_sentences)):
|
| 196 |
+
file.write(str(i+1))
|
| 197 |
+
file.write('\n')
|
| 198 |
+
start = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['start'])))
|
| 199 |
+
if "." in str(srt_sentences.iloc[i]['start']):
|
| 200 |
+
if len(str(srt_sentences.iloc[i]['start']).split('.')[1]) > 3:
|
| 201 |
+
start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1][:3]
|
| 202 |
+
else:
|
| 203 |
+
start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1]
|
| 204 |
+
file.write(start)
|
| 205 |
+
stop = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['stop'])))
|
| 206 |
+
if len(str(srt_sentences.iloc[i]['stop']).split('.')[1]) > 3:
|
| 207 |
+
stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1][:3]
|
| 208 |
+
else:
|
| 209 |
+
stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1]
|
| 210 |
+
file.write(' --> ')
|
| 211 |
+
file.write(stop)
|
| 212 |
+
file.write('\n')
|
| 213 |
+
file.writelines(srt_sentences.iloc[i]['translated'])
|
| 214 |
+
if int(i) != len(srt_sentences)-1:
|
| 215 |
+
file.write('\n\n')
|
| 216 |
+
try:
|
| 217 |
+
file1 = open('./testi.srt', 'r')
|
| 218 |
+
Lines = file1.readlines()
|
| 219 |
+
|
| 220 |
+
count = 0
|
| 221 |
+
# Strips the newline character
|
| 222 |
+
for line in Lines:
|
| 223 |
+
count += 1
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
video_out = str(Path(video_in)).replace('.mp4', '_out.mp4')
|
| 228 |
+
command = "ffmpeg -i {} -y -vf subtitles=./testi.srt {}".format(Path(video_in), Path(video_out))
|
| 229 |
+
os.system(command)
|
| 230 |
+
return video_out
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(e)
|
| 233 |
+
return video_out
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# ---- Gradio Layout -----
|
| 237 |
+
video_in = gr.Video(label="Video file", interactive=True)
|
| 238 |
+
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
|
| 239 |
+
text_out_t5 = gr.Textbox(label="Transcription T5", lines=10, interactive=True)
|
| 240 |
+
translation_out = gr.Textbox(label="Translation", lines=10, interactive=True)
|
| 241 |
+
text_out_timestamps = gr.Textbox(label="Word level timestamps", lines=10, interactive=True)
|
| 242 |
+
srt_sentences = gr.DataFrame(label="Srt lines", row_count=(0, "dynamic"))
|
| 243 |
+
video_out = gr.Video(label="Video Out")
|
| 244 |
+
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
|
| 245 |
+
examples = gr.components.Dataset(
|
| 246 |
+
components=[video_in], samples=VIDEOS, type="index")
|
| 247 |
+
|
| 248 |
+
demo = gr.Blocks(enable_queue=True, css='''
|
| 249 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
| 250 |
+
#\\31 3 { max-width: 540px; }
|
| 251 |
+
.output-markdown {max-width: 65ch !important;}
|
| 252 |
+
''')
|
| 253 |
+
demo.encrypt = False
|
| 254 |
+
with demo:
|
| 255 |
+
transcription_var = gr.Variable()
|
| 256 |
+
timestamps_var = gr.Variable()
|
| 257 |
+
timestamps_df = gr.Dataframe(visible=False, row_count=(0, "dynamic"))
|
| 258 |
+
with gr.Row():
|
| 259 |
+
with gr.Column():
|
| 260 |
+
gr.Markdown('''
|
| 261 |
+
# Create videos with English subtitles from videos spoken in Finnish
|
| 262 |
+
This project is a quick proof of concept of a simple video editor where you can add English subtitles to Finnish videos.
|
| 263 |
+
This space currently only works for short videos (Up to 128 tokens) but will be improved in next versions.
|
| 264 |
+
Space uses our finetuned Finnish ASR models, Our pretrained + finetuned Finnish T5 model for casing+punctuation correction and Opus-MT models from Helsinki University for Finnish --> English translation.
|
| 265 |
+
This space was inspired by https://huggingface.co/spaces/radames/edit-video-by-editing-text
|
| 266 |
+
''')
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
|
| 270 |
+
examples.render()
|
| 271 |
+
|
| 272 |
+
def load_example(id):
|
| 273 |
+
video = SAMPLES[id]['video']
|
| 274 |
+
transcription = ''
|
| 275 |
+
timestamps = SAMPLES[id]['timestamps']
|
| 276 |
+
|
| 277 |
+
return (video, transcription, transcription, timestamps)
|
| 278 |
+
|
| 279 |
+
examples.click(
|
| 280 |
+
load_example,
|
| 281 |
+
inputs=[examples],
|
| 282 |
+
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
| 283 |
+
queue=False)
|
| 284 |
+
with gr.Row():
|
| 285 |
+
with gr.Column():
|
| 286 |
+
video_in.render()
|
| 287 |
+
transcribe_btn = gr.Button("1. Press here to transcribe Audio")
|
| 288 |
+
transcribe_btn.click(speech_to_text, [video_in], [
|
| 289 |
+
text_in, transcription_var, text_out_timestamps,timestamps_df, text_out_t5, translation_out])
|
| 290 |
+
|
| 291 |
+
with gr.Row():
|
| 292 |
+
gr.Markdown('''
|
| 293 |
+
### Here you will get varying outputs from different parts of the processing
|
| 294 |
+
ASR model output, T5 model output which corrects casing + hyphenation, sentence level translations and word level timestamps''')
|
| 295 |
+
|
| 296 |
+
with gr.Row():
|
| 297 |
+
with gr.Column():
|
| 298 |
+
text_in.render()
|
| 299 |
+
with gr.Column():
|
| 300 |
+
text_out_t5.render()
|
| 301 |
+
with gr.Column():
|
| 302 |
+
translation_out.render()
|
| 303 |
+
with gr.Column():
|
| 304 |
+
text_out_timestamps.render()
|
| 305 |
+
with gr.Row():
|
| 306 |
+
with gr.Column():
|
| 307 |
+
translate_and_make_srt_btn = gr.Button("2. Press here to create rows for subtitles")
|
| 308 |
+
translate_and_make_srt_btn.click(create_srt, [text_out_t5, timestamps_df], [
|
| 309 |
+
srt_sentences])
|
| 310 |
+
with gr.Row():
|
| 311 |
+
with gr.Column():
|
| 312 |
+
srt_sentences.render()
|
| 313 |
+
with gr.Row():
|
| 314 |
+
with gr.Column():
|
| 315 |
+
translate_and_make_srt_btn = gr.Button("3. Press here to create subtitle file and insert translations to video")
|
| 316 |
+
translate_and_make_srt_btn.click(create_srt_and_burn, [video_in, srt_sentences], [
|
| 317 |
+
video_out])
|
| 318 |
+
video_out.render()
|
| 319 |
+
|
| 320 |
+
if __name__ == "__main__":
|
| 321 |
+
demo.launch(debug=True)
|
examples/.gitattributes
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
eka.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
toka.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
kolmas.mp4 filter=lfs diff=lfs merge=lfs -text
|
examples/video_1.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"video":"./examples/video_1.mp4", "transcription": "", "timestamps": []}
|
examples/video_1.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2274caa70e7be8994aa0b2e6c29eface3817f53d5e37d3f3984f95e5460dd4f
|
| 3 |
+
size 31346388
|
examples/video_2.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"video":"./examples/video_2.mp4", "transcription": "", "timestamps": []}
|
examples/video_2.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2e0ffb151623c1978af61e1a476fae4385deba658427b005ceb907bd95106eb2
|
| 3 |
+
size 32746315
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio==3.0.24
|
| 4 |
+
datasets
|
| 5 |
+
librosa
|
| 6 |
+
ffmpeg-python
|
| 7 |
+
python-dotenv
|
| 8 |
+
pandas
|
| 9 |
+
fuzzywuzzy
|
| 10 |
+
python-Levenshtein
|
| 11 |
+
sentencepiece
|
| 12 |
+
protobuf
|
| 13 |
+
pyctcdecode
|
| 14 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
| 15 |
+
sacremoses
|
| 16 |
+
fastt5
|