Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """Gradio-regression.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1qmfhcPafAIfczazACroyAYyRohdQbklK | |
| """ | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| from sklearn.linear_model import Ridge | |
| from sklearn.model_selection import train_test_split | |
| np.random.seed(2) | |
| X = 2 * np.random.rand(100, 1) | |
| y = 4 + 3 * X + np.random.rand(100, 1) | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| X, y, test_size=0.6, random_state=42) | |
| def build_model(alpha): | |
| r_reg = Ridge(alpha=alpha) | |
| r_reg.fit(X_train, y_train) | |
| return r_reg | |
| def predict(alpha): | |
| ridge_reg = build_model(alpha) | |
| preds = ridge_reg.predict(X_test) | |
| fig = plt.figure() | |
| plt.scatter(X_train, y_train, color="yellowgreen", marker=".", label="training data") | |
| plt.scatter(X_test, y_test, color="gold", marker=".", label="test data") | |
| plt.plot(X_test, preds, color="cornflowerblue", | |
| linewidth=2, | |
| label="Ridge regressor") | |
| plt.ylabel("Y") | |
| plt.xlabel("X") | |
| plt.legend(loc="upper left") | |
| return plt | |
| inputs = gr.Slider(0, 20, label='alpha', default=1) | |
| outputs = gr.Plot(show_label=True) | |
| title = "Effect of regularization using Ridge regression" | |
| description = "Alpha is the regularization parameter which basically restricts model. The idea is that using regularization the model even if performs poorly on the training data, it would provide a better fit for generalizing data. Try out yourself by increasing or decreasing the value of alpha." | |
| gr.Interface(fn = predict, inputs = inputs, outputs = outputs, title = title, description = description).launch() | |