Spaces:
Build error
Build error
Commit
·
58047f4
1
Parent(s):
d53bfda
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gradio demo for different clustering techiniques
|
| 2 |
+
|
| 3 |
+
Derived from https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
from functools import partial
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
import numpy as np
|
| 13 |
+
from sklearn.cluster import (
|
| 14 |
+
AgglomerativeClustering, Birch, DBSCAN, KMeans, MeanShift, OPTICS, SpectralClustering, estimate_bandwidth
|
| 15 |
+
)
|
| 16 |
+
from sklearn.datasets import make_blobs, make_circles, make_moons
|
| 17 |
+
from sklearn.mixture import GaussianMixture
|
| 18 |
+
from sklearn.neighbors import kneighbors_graph
|
| 19 |
+
from sklearn.preprocessing import StandardScaler
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
plt.style.use('seaborn')
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
SEED = 0
|
| 26 |
+
MAX_CLUSTERS = 10
|
| 27 |
+
N_SAMPLES = 1000
|
| 28 |
+
N_COLS = 3
|
| 29 |
+
FIGSIZE = 7, 7 # does not affect size in webpage
|
| 30 |
+
COLORS = [
|
| 31 |
+
'blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan'
|
| 32 |
+
]
|
| 33 |
+
assert len(COLORS) >= MAX_CLUSTERS, "Not enough different colors for all clusters"
|
| 34 |
+
np.random.seed(SEED)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def normalize(X):
|
| 38 |
+
return StandardScaler().fit_transform(X)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_regular(n_clusters):
|
| 42 |
+
# spiral pattern
|
| 43 |
+
centers = [
|
| 44 |
+
[0, 0],
|
| 45 |
+
[1, 0],
|
| 46 |
+
[1, 1],
|
| 47 |
+
[0, 1],
|
| 48 |
+
[-1, 1],
|
| 49 |
+
[-1, 0],
|
| 50 |
+
[-1, -1],
|
| 51 |
+
[0, -1],
|
| 52 |
+
[1, -1],
|
| 53 |
+
[2, -1],
|
| 54 |
+
][:n_clusters]
|
| 55 |
+
assert len(centers) == n_clusters
|
| 56 |
+
X, labels = make_blobs(n_samples=N_SAMPLES, centers=centers, cluster_std=0.25, random_state=SEED)
|
| 57 |
+
return normalize(X), labels
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_circles(n_clusters):
|
| 61 |
+
X, labels = make_circles(n_samples=N_SAMPLES, factor=0.5, noise=0.05, random_state=SEED)
|
| 62 |
+
return normalize(X), labels
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_moons(n_clusters):
|
| 66 |
+
X, labels = make_moons(n_samples=N_SAMPLES, noise=0.05, random_state=SEED)
|
| 67 |
+
return normalize(X), labels
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_noise(n_clusters):
|
| 71 |
+
np.random.seed(SEED)
|
| 72 |
+
X, labels = np.random.rand(N_SAMPLES, 2), np.random.randint(0, n_clusters, size=(N_SAMPLES,))
|
| 73 |
+
return normalize(X), labels
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def get_anisotropic(n_clusters):
|
| 77 |
+
X, labels = make_blobs(n_samples=N_SAMPLES, centers=n_clusters, random_state=170)
|
| 78 |
+
transformation = [[0.6, -0.6], [-0.4, 0.8]]
|
| 79 |
+
X = np.dot(X, transformation)
|
| 80 |
+
return X, labels
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def get_varied(n_clusters):
|
| 84 |
+
cluster_std = [1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0][:n_clusters]
|
| 85 |
+
assert len(cluster_std) == n_clusters
|
| 86 |
+
X, labels = make_blobs(
|
| 87 |
+
n_samples=N_SAMPLES, centers=n_clusters, cluster_std=cluster_std, random_state=SEED
|
| 88 |
+
)
|
| 89 |
+
return normalize(X), labels
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_spiral(n_clusters):
|
| 93 |
+
# from https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
|
| 94 |
+
np.random.seed(SEED)
|
| 95 |
+
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, N_SAMPLES))
|
| 96 |
+
x = t * np.cos(t)
|
| 97 |
+
y = t * np.sin(t)
|
| 98 |
+
X = np.concatenate((x, y))
|
| 99 |
+
X += 0.7 * np.random.randn(2, N_SAMPLES)
|
| 100 |
+
X = np.ascontiguousarray(X.T)
|
| 101 |
+
|
| 102 |
+
labels = np.zeros(N_SAMPLES, dtype=int)
|
| 103 |
+
return normalize(X), labels
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
DATA_MAPPING = {
|
| 107 |
+
'regular': get_regular,
|
| 108 |
+
'circles': get_circles,
|
| 109 |
+
'moons': get_moons,
|
| 110 |
+
'spiral': get_spiral,
|
| 111 |
+
'noise': get_noise,
|
| 112 |
+
'anisotropic': get_anisotropic,
|
| 113 |
+
'varied': get_varied,
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def get_groundtruth_model(X, labels, n_clusters, **kwargs):
|
| 118 |
+
# dummy model to show true label distribution
|
| 119 |
+
class Dummy:
|
| 120 |
+
def __init__(self, y):
|
| 121 |
+
self.labels_ = labels
|
| 122 |
+
|
| 123 |
+
return Dummy(labels)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def get_kmeans(X, labels, n_clusters, **kwargs):
|
| 127 |
+
model = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10, random_state=SEED)
|
| 128 |
+
model.set_params(**kwargs)
|
| 129 |
+
return model.fit(X)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def get_dbscan(X, labels, n_clusters, **kwargs):
|
| 133 |
+
model = DBSCAN(eps=0.3)
|
| 134 |
+
model.set_params(**kwargs)
|
| 135 |
+
return model.fit(X)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def get_agglomerative(X, labels, n_clusters, **kwargs):
|
| 139 |
+
connectivity = kneighbors_graph(
|
| 140 |
+
X, n_neighbors=n_clusters, include_self=False
|
| 141 |
+
)
|
| 142 |
+
# make connectivity symmetric
|
| 143 |
+
connectivity = 0.5 * (connectivity + connectivity.T)
|
| 144 |
+
model = AgglomerativeClustering(
|
| 145 |
+
n_clusters=n_clusters, linkage="ward", connectivity=connectivity
|
| 146 |
+
)
|
| 147 |
+
model.set_params(**kwargs)
|
| 148 |
+
return model.fit(X)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def get_meanshift(X, labels, n_clusters, **kwargs):
|
| 152 |
+
bandwidth = estimate_bandwidth(X, quantile=0.25)
|
| 153 |
+
model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
| 154 |
+
model.set_params(**kwargs)
|
| 155 |
+
return model.fit(X)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def get_spectral(X, labels, n_clusters, **kwargs):
|
| 159 |
+
model = SpectralClustering(
|
| 160 |
+
n_clusters=n_clusters,
|
| 161 |
+
eigen_solver="arpack",
|
| 162 |
+
affinity="nearest_neighbors",
|
| 163 |
+
)
|
| 164 |
+
model.set_params(**kwargs)
|
| 165 |
+
return model.fit(X)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def get_optics(X, labels, n_clusters, **kwargs):
|
| 169 |
+
model = OPTICS(
|
| 170 |
+
min_samples=7,
|
| 171 |
+
xi=0.05,
|
| 172 |
+
min_cluster_size=0.1,
|
| 173 |
+
)
|
| 174 |
+
model.set_params(**kwargs)
|
| 175 |
+
return model.fit(X)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def get_birch(X, labels, n_clusters, **kwargs):
|
| 179 |
+
model = Birch(n_clusters=n_clusters)
|
| 180 |
+
model.set_params(**kwargs)
|
| 181 |
+
return model.fit(X)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def get_gaussianmixture(X, labels, n_clusters, **kwargs):
|
| 185 |
+
model = GaussianMixture(
|
| 186 |
+
n_components=n_clusters, covariance_type="full", random_state=SEED,
|
| 187 |
+
)
|
| 188 |
+
model.set_params(**kwargs)
|
| 189 |
+
return model.fit(X)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
MODEL_MAPPING = {
|
| 193 |
+
'True labels': get_groundtruth_model,
|
| 194 |
+
'KMeans': get_kmeans,
|
| 195 |
+
'DBSCAN': get_dbscan,
|
| 196 |
+
'MeanShift': get_meanshift,
|
| 197 |
+
'SpectralClustering': get_spectral,
|
| 198 |
+
'OPTICS': get_optics,
|
| 199 |
+
'Birch': get_birch,
|
| 200 |
+
'GaussianMixture': get_gaussianmixture,
|
| 201 |
+
'AgglomerativeClustering': get_agglomerative,
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def plot_clusters(ax, X, labels):
|
| 206 |
+
set_clusters = set(labels)
|
| 207 |
+
set_clusters.discard(-1) # -1 signifiies outliers, which we plot separately
|
| 208 |
+
for label, color in zip(sorted(set_clusters), COLORS):
|
| 209 |
+
idx = labels == label
|
| 210 |
+
if not sum(idx):
|
| 211 |
+
continue
|
| 212 |
+
ax.scatter(X[idx, 0], X[idx, 1], color=color)
|
| 213 |
+
|
| 214 |
+
# show outliers (if any)
|
| 215 |
+
idx = labels == -1
|
| 216 |
+
if sum(idx):
|
| 217 |
+
ax.scatter(X[idx, 0], X[idx, 1], c='k', marker='x')
|
| 218 |
+
|
| 219 |
+
ax.grid(None)
|
| 220 |
+
ax.set_xticks([])
|
| 221 |
+
ax.set_yticks([])
|
| 222 |
+
return ax
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def cluster(dataset: str, n_clusters: int, clustering_algorithm: str):
|
| 226 |
+
if isinstance(n_clusters, dict):
|
| 227 |
+
n_clusters = n_clusters['value']
|
| 228 |
+
else:
|
| 229 |
+
n_clusters = int(n_clusters)
|
| 230 |
+
|
| 231 |
+
X, labels = DATA_MAPPING[dataset](n_clusters)
|
| 232 |
+
model = MODEL_MAPPING[clustering_algorithm](X, labels, n_clusters=n_clusters)
|
| 233 |
+
if hasattr(model, "labels_"):
|
| 234 |
+
y_pred = model.labels_.astype(int)
|
| 235 |
+
else:
|
| 236 |
+
y_pred = model.predict(X)
|
| 237 |
+
|
| 238 |
+
fig, ax = plt.subplots(figsize=FIGSIZE)
|
| 239 |
+
|
| 240 |
+
plot_clusters(ax, X, y_pred)
|
| 241 |
+
ax.set_title(clustering_algorithm, fontsize=16)
|
| 242 |
+
|
| 243 |
+
return fig
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
title = "Clustering with Scikit-learn"
|
| 247 |
+
description = (
|
| 248 |
+
"This example shows how different clustering algorithms work. Simply pick "
|
| 249 |
+
"the dataset and the number of clusters to see how the clustering algorithms work. "
|
| 250 |
+
"Colored cirles are (predicted) labels and black x are outliers."
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def iter_grid(n_rows, n_cols):
|
| 255 |
+
# create a grid using gradio Block
|
| 256 |
+
for _ in range(n_rows):
|
| 257 |
+
with gr.Row():
|
| 258 |
+
for _ in range(n_cols):
|
| 259 |
+
with gr.Column():
|
| 260 |
+
yield
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
with gr.Blocks(title=title) as demo:
|
| 264 |
+
gr.HTML(f"<b>{title}</b>")
|
| 265 |
+
gr.Markdown(description)
|
| 266 |
+
|
| 267 |
+
input_models = list(MODEL_MAPPING)
|
| 268 |
+
input_data = gr.Radio(
|
| 269 |
+
list(DATA_MAPPING),
|
| 270 |
+
value="regular",
|
| 271 |
+
label="dataset"
|
| 272 |
+
)
|
| 273 |
+
input_n_clusters = gr.Slider(
|
| 274 |
+
minimum=1,
|
| 275 |
+
maximum=MAX_CLUSTERS,
|
| 276 |
+
value=4,
|
| 277 |
+
step=1,
|
| 278 |
+
label='Number of clusters'
|
| 279 |
+
)
|
| 280 |
+
n_rows = int(math.ceil(len(input_models) / N_COLS))
|
| 281 |
+
counter = 0
|
| 282 |
+
for _ in iter_grid(n_rows, N_COLS):
|
| 283 |
+
if counter >= len(input_models):
|
| 284 |
+
break
|
| 285 |
+
|
| 286 |
+
input_model = input_models[counter]
|
| 287 |
+
plot = gr.Plot(label=input_model)
|
| 288 |
+
fn = partial(cluster, clustering_algorithm=input_model)
|
| 289 |
+
input_data.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
| 290 |
+
input_n_clusters.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
| 291 |
+
counter += 1
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
demo.launch()
|