Commit
·
a02aab8
1
Parent(s):
5235215
Add files
Browse files- README.md +3 -3
- app.py +176 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Xgboost Income Prediction With Explainability
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.1.7
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: Xgboost Income Prediction With Explainability
|
| 3 |
+
emoji: 💰
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.1.7
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import matplotlib
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import shap
|
| 8 |
+
import xgboost as xgb
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
|
| 11 |
+
matplotlib.use("Agg")
|
| 12 |
+
|
| 13 |
+
dataset = load_dataset("scikit-learn/adult-census-income")
|
| 14 |
+
|
| 15 |
+
X_train = dataset["train"].to_pandas()
|
| 16 |
+
_ = X_train.pop("fnlwgt")
|
| 17 |
+
_ = X_train.pop("race")
|
| 18 |
+
|
| 19 |
+
y_train = X_train.pop("income")
|
| 20 |
+
y_train = (y_train == ">50K").astype(int)
|
| 21 |
+
categorical_columns = [
|
| 22 |
+
"workclass",
|
| 23 |
+
"education",
|
| 24 |
+
"marital.status",
|
| 25 |
+
"occupation",
|
| 26 |
+
"relationship",
|
| 27 |
+
"sex",
|
| 28 |
+
"native.country",
|
| 29 |
+
]
|
| 30 |
+
X_train = X_train.astype({col: "category" for col in categorical_columns})
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
data = xgb.DMatrix(X_train, label=y_train, enable_categorical=True)
|
| 34 |
+
model = xgb.train(params={"objective": "binary:logistic"}, dtrain=data)
|
| 35 |
+
explainer = shap.TreeExplainer(model)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def predict(*args):
|
| 39 |
+
df = pd.DataFrame([args], columns=X_train.columns)
|
| 40 |
+
df = df.astype({col: "category" for col in categorical_columns})
|
| 41 |
+
pos_pred = model.predict(xgb.DMatrix(df, enable_categorical=True))
|
| 42 |
+
return {">50K": float(pos_pred[0]), "<=50K": 1 - float(pos_pred[0])}
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def interpret(*args):
|
| 46 |
+
df = pd.DataFrame([args], columns=X_train.columns)
|
| 47 |
+
df = df.astype({col: "category" for col in categorical_columns})
|
| 48 |
+
shap_values = explainer.shap_values(xgb.DMatrix(df, enable_categorical=True))
|
| 49 |
+
scores_desc = list(zip(shap_values[0], X_train.columns))
|
| 50 |
+
scores_desc = sorted(scores_desc)
|
| 51 |
+
fig_m = plt.figure(tight_layout=True)
|
| 52 |
+
plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
|
| 53 |
+
plt.title("Feature Shap Values")
|
| 54 |
+
plt.ylabel("Shap Value")
|
| 55 |
+
plt.xlabel("Feature")
|
| 56 |
+
plt.tight_layout()
|
| 57 |
+
return fig_m
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
unique_class = sorted(X_train["workclass"].unique())
|
| 61 |
+
unique_education = sorted(X_train["education"].unique())
|
| 62 |
+
unique_marital_status = sorted(X_train["marital.status"].unique())
|
| 63 |
+
unique_relationship = sorted(X_train["relationship"].unique())
|
| 64 |
+
unique_occupation = sorted(X_train["occupation"].unique())
|
| 65 |
+
unique_sex = sorted(X_train["sex"].unique())
|
| 66 |
+
unique_country = sorted(X_train["native.country"].unique())
|
| 67 |
+
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
gr.Markdown("""
|
| 70 |
+
## Income Classification with XGBoost 💰
|
| 71 |
+
|
| 72 |
+
This example shows how to load data from the hugging face hub to train an XGBoost classifier and
|
| 73 |
+
demo the predictions with gradio.
|
| 74 |
+
|
| 75 |
+
The source is [here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability).
|
| 76 |
+
""")
|
| 77 |
+
with gr.Row():
|
| 78 |
+
with gr.Column():
|
| 79 |
+
age = gr.Slider(label="Age", minimum=17, maximum=90, step=1, randomize=True)
|
| 80 |
+
work_class = gr.Dropdown(
|
| 81 |
+
label="Workclass",
|
| 82 |
+
choices=unique_class,
|
| 83 |
+
value=lambda: random.choice(unique_class),
|
| 84 |
+
)
|
| 85 |
+
education = gr.Dropdown(
|
| 86 |
+
label="Education Level",
|
| 87 |
+
choices=unique_education,
|
| 88 |
+
value=lambda: random.choice(unique_education),
|
| 89 |
+
)
|
| 90 |
+
years = gr.Slider(
|
| 91 |
+
label="Years of schooling",
|
| 92 |
+
minimum=1,
|
| 93 |
+
maximum=16,
|
| 94 |
+
step=1,
|
| 95 |
+
randomize=True,
|
| 96 |
+
)
|
| 97 |
+
marital_status = gr.Dropdown(
|
| 98 |
+
label="Marital Status",
|
| 99 |
+
choices=unique_marital_status,
|
| 100 |
+
value=lambda: random.choice(unique_marital_status),
|
| 101 |
+
)
|
| 102 |
+
occupation = gr.Dropdown(
|
| 103 |
+
label="Occupation",
|
| 104 |
+
choices=unique_occupation,
|
| 105 |
+
value=lambda: random.choice(unique_occupation),
|
| 106 |
+
)
|
| 107 |
+
relationship = gr.Dropdown(
|
| 108 |
+
label="Relationship Status",
|
| 109 |
+
choices=unique_relationship,
|
| 110 |
+
value=lambda: random.choice(unique_relationship),
|
| 111 |
+
)
|
| 112 |
+
sex = gr.Dropdown(
|
| 113 |
+
label="Sex", choices=unique_sex, value=lambda: random.choice(unique_sex)
|
| 114 |
+
)
|
| 115 |
+
capital_gain = gr.Slider(
|
| 116 |
+
label="Capital Gain",
|
| 117 |
+
minimum=0,
|
| 118 |
+
maximum=100000,
|
| 119 |
+
step=500,
|
| 120 |
+
randomize=True,
|
| 121 |
+
)
|
| 122 |
+
capital_loss = gr.Slider(
|
| 123 |
+
label="Capital Loss", minimum=0, maximum=10000, step=500, randomize=True
|
| 124 |
+
)
|
| 125 |
+
hours_per_week = gr.Slider(
|
| 126 |
+
label="Hours Per Week Worked", minimum=1, maximum=99, step=1
|
| 127 |
+
)
|
| 128 |
+
country = gr.Dropdown(
|
| 129 |
+
label="Native Country",
|
| 130 |
+
choices=unique_country,
|
| 131 |
+
value=lambda: random.choice(unique_country),
|
| 132 |
+
)
|
| 133 |
+
with gr.Column():
|
| 134 |
+
label = gr.Label()
|
| 135 |
+
plot = gr.Plot()
|
| 136 |
+
with gr.Row():
|
| 137 |
+
predict_btn = gr.Button(value="Predict")
|
| 138 |
+
interpret_btn = gr.Button(value="Interpret")
|
| 139 |
+
predict_btn.click(
|
| 140 |
+
predict,
|
| 141 |
+
inputs=[
|
| 142 |
+
age,
|
| 143 |
+
work_class,
|
| 144 |
+
education,
|
| 145 |
+
years,
|
| 146 |
+
marital_status,
|
| 147 |
+
occupation,
|
| 148 |
+
relationship,
|
| 149 |
+
sex,
|
| 150 |
+
capital_gain,
|
| 151 |
+
capital_loss,
|
| 152 |
+
hours_per_week,
|
| 153 |
+
country,
|
| 154 |
+
],
|
| 155 |
+
outputs=[label],
|
| 156 |
+
)
|
| 157 |
+
interpret_btn.click(
|
| 158 |
+
interpret,
|
| 159 |
+
inputs=[
|
| 160 |
+
age,
|
| 161 |
+
work_class,
|
| 162 |
+
education,
|
| 163 |
+
years,
|
| 164 |
+
marital_status,
|
| 165 |
+
occupation,
|
| 166 |
+
relationship,
|
| 167 |
+
sex,
|
| 168 |
+
capital_gain,
|
| 169 |
+
capital_loss,
|
| 170 |
+
hours_per_week,
|
| 171 |
+
country,
|
| 172 |
+
],
|
| 173 |
+
outputs=[plot],
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
matplotlib
|
| 2 |
+
shap
|
| 3 |
+
xgboost
|
| 4 |
+
pandas
|
| 5 |
+
datasets
|