Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
|
| 5 |
+
|
| 6 |
+
st.set_page_config(page_title="Sentiment Analysis App")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
| 10 |
+
|
| 11 |
+
st.title("Sentiment Analysis App")
|
| 12 |
+
|
| 13 |
+
user_input = st.text_area("Enter a message:")
|
| 14 |
+
|
| 15 |
+
if st.button("Analyze Sentiment"):
|
| 16 |
+
if user_input:
|
| 17 |
+
# Perform sentiment analysis
|
| 18 |
+
results = sentiment_classifier(user_input)
|
| 19 |
+
sentiment_label = results[0]["label"]
|
| 20 |
+
sentiment_score = results[0]["score"]
|
| 21 |
+
|
| 22 |
+
st.write(f"Sentiment: {sentiment_label}")
|
| 23 |
+
st.write(f"Confidence Score: {sentiment_score:.2f}")
|
| 24 |
+
|
| 25 |
+
# Run the Streamlit app
|