Spaces:
Running
Running
| import os | |
| import subprocess | |
| import streamlit as st | |
| from huggingface_hub import snapshot_download | |
| def check_directory_path(directory_name: str) -> str: | |
| if os.path.exists(directory_name): | |
| path = os.path.abspath(directory_name) | |
| return str(path) | |
| # Define quantization types | |
| QUANT_TYPES = [ | |
| "Q2_K", "Q3_K_M", "Q3_K_S", "Q4_K_M", "Q4_K_S", | |
| "Q5_K_M", "Q5_K_S", "Q6_K" | |
| ] | |
| model_dir_path = check_directory_path("/app/llama.cpp") | |
| def download_model(hf_model_name, output_dir="/tmp/models"): | |
| """ | |
| Downloads a Hugging Face model and saves it locally. | |
| """ | |
| st.write(f"π₯ Downloading `{hf_model_name}` from Hugging Face...") | |
| os.makedirs(output_dir, exist_ok=True) | |
| snapshot_download(repo_id=hf_model_name, local_dir=output_dir, local_dir_use_symlinks=False) | |
| st.success("β Model downloaded successfully!") | |
| def convert_to_gguf(model_dir, output_file): | |
| """ | |
| Converts a Hugging Face model to GGUF format. | |
| """ | |
| st.write(f"π Converting `{model_dir}` to GGUF format...") | |
| os.makedirs(os.path.dirname(output_file), exist_ok=True) | |
| st.write(model_dir_path) | |
| cmd = [ | |
| "python3", "/app/llama.cpp/convert_hf_to_gguf.py", model_dir, | |
| "--outtype", "f16", "--outfile", output_file | |
| ] | |
| process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| if process.returncode == 0: | |
| st.success(f"β Conversion complete: `{output_file}`") | |
| else: | |
| st.error(f"β Conversion failed: {process.stderr}") | |
| def quantize_llama(model_path, quantized_output_path, quant_type): | |
| """ | |
| Quantizes a GGUF model. | |
| """ | |
| st.write(f"β‘ Quantizing `{model_path}` with `{quant_type}` precision...") | |
| os.makedirs(os.path.dirname(quantized_output_path), exist_ok=True) | |
| quantize_path = "/app/llama.cpp/build/bin/llama-quantize" | |
| cmd = [ | |
| "/app/llama.cpp/build/bin/llama-quantize", | |
| model_path, | |
| quantized_output_path, | |
| quant_type | |
| ] | |
| process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| if process.returncode == 0: | |
| st.success(f"β Quantized model saved at `{quantized_output_path}`") | |
| else: | |
| st.error(f"β Quantization failed: {process.stderr}") | |
| def automate_llama_quantization(hf_model_name, quant_type): | |
| """ | |
| Orchestrates the entire quantization process. | |
| """ | |
| output_dir = "/tmp/models" | |
| gguf_file = os.path.join(output_dir, f"{hf_model_name.replace('/', '_')}.gguf") | |
| quantized_file = gguf_file.replace(".gguf", f"-{quant_type}.gguf") | |
| progress_bar = st.progress(0) | |
| # Step 1: Download | |
| st.write("### Step 1: Downloading Model") | |
| download_model(hf_model_name, output_dir) | |
| progress_bar.progress(33) | |
| # Step 2: Convert to GGUF | |
| st.write("### Step 2: Converting Model to GGUF Format") | |
| convert_to_gguf(output_dir, gguf_file) | |
| progress_bar.progress(66) | |
| # Step 3: Quantize Model | |
| st.write("### Step 3: Quantizing Model") | |
| quantize_llama(gguf_file, quantized_file, quant_type.lower()) | |
| progress_bar.progress(100) | |
| st.success(f"π All steps completed! Quantized model available at: `{quantized_file}`") | |
| return quantized_file | |
| # Streamlit UI | |
| st.title("π¦ LLaMA Model Quantization (llama.cpp)") | |
| hf_model_name = st.text_input("Enter Hugging Face Model Name", "Qwen/Qwen2.5-1.5B") | |
| quant_type = st.selectbox("Select Quantization Type", QUANT_TYPES) | |
| start_button = st.button("π Start Quantization") | |
| if start_button: | |
| with st.spinner("Processing..."): | |
| quantized_model_path = automate_llama_quantization(hf_model_name, quant_type) | |
| if quantized_model_path: | |
| with open(quantized_model_path, "rb") as f: | |
| st.download_button("β¬οΈ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path)) |