Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,6 @@ import subprocess
|
|
| 3 |
import streamlit as st
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
|
| 6 |
-
import subprocess
|
| 7 |
-
|
| 8 |
def check_directory_path(directory_name: str) -> str:
|
| 9 |
if os.path.exists(directory_name):
|
| 10 |
path = os.path.abspath(directory_name)
|
|
@@ -16,9 +14,9 @@ QUANT_TYPES = [
|
|
| 16 |
"Q5_K_M", "Q5_K_S", "Q6_K"
|
| 17 |
]
|
| 18 |
|
| 19 |
-
model_dir_path=check_directory_path("llama.cpp")
|
| 20 |
|
| 21 |
-
def download_model(hf_model_name, output_dir="models"):
|
| 22 |
"""
|
| 23 |
Downloads a Hugging Face model and saves it locally.
|
| 24 |
"""
|
|
@@ -35,8 +33,8 @@ def convert_to_gguf(model_dir, output_file):
|
|
| 35 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
| 36 |
st.write(model_dir_path)
|
| 37 |
cmd = [
|
| 38 |
-
|
| 39 |
-
|
| 40 |
]
|
| 41 |
process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 42 |
if process.returncode == 0:
|
|
@@ -54,10 +52,10 @@ def quantize_llama(model_path, quantized_output_path, quant_type):
|
|
| 54 |
subprocess.run(["chmod", "+x", quantize_path], check=True)
|
| 55 |
|
| 56 |
cmd = [
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
]
|
| 62 |
|
| 63 |
process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
@@ -71,7 +69,7 @@ def automate_llama_quantization(hf_model_name, quant_type):
|
|
| 71 |
"""
|
| 72 |
Orchestrates the entire quantization process.
|
| 73 |
"""
|
| 74 |
-
output_dir = "models"
|
| 75 |
gguf_file = os.path.join(output_dir, f"{hf_model_name.replace('/', '_')}.gguf")
|
| 76 |
quantized_file = gguf_file.replace(".gguf", f"-{quant_type}.gguf")
|
| 77 |
|
|
@@ -107,5 +105,4 @@ if start_button:
|
|
| 107 |
quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
|
| 108 |
if quantized_model_path:
|
| 109 |
with open(quantized_model_path, "rb") as f:
|
| 110 |
-
st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path))
|
| 111 |
-
|
|
|
|
| 3 |
import streamlit as st
|
| 4 |
from huggingface_hub import snapshot_download
|
| 5 |
|
|
|
|
|
|
|
| 6 |
def check_directory_path(directory_name: str) -> str:
|
| 7 |
if os.path.exists(directory_name):
|
| 8 |
path = os.path.abspath(directory_name)
|
|
|
|
| 14 |
"Q5_K_M", "Q5_K_S", "Q6_K"
|
| 15 |
]
|
| 16 |
|
| 17 |
+
model_dir_path = check_directory_path("/app/llama.cpp")
|
| 18 |
|
| 19 |
+
def download_model(hf_model_name, output_dir="/tmp/models"):
|
| 20 |
"""
|
| 21 |
Downloads a Hugging Face model and saves it locally.
|
| 22 |
"""
|
|
|
|
| 33 |
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
| 34 |
st.write(model_dir_path)
|
| 35 |
cmd = [
|
| 36 |
+
"python3", "/app/llama.cpp/convert_hf_to_gguf.py", model_dir,
|
| 37 |
+
"--outtype", "f16", "--outfile", output_file
|
| 38 |
]
|
| 39 |
process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 40 |
if process.returncode == 0:
|
|
|
|
| 52 |
subprocess.run(["chmod", "+x", quantize_path], check=True)
|
| 53 |
|
| 54 |
cmd = [
|
| 55 |
+
"/app/llama.cpp/build/bin/llama-quantize",
|
| 56 |
+
model_path,
|
| 57 |
+
quantized_output_path,
|
| 58 |
+
quant_type
|
| 59 |
]
|
| 60 |
|
| 61 |
process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
|
|
| 69 |
"""
|
| 70 |
Orchestrates the entire quantization process.
|
| 71 |
"""
|
| 72 |
+
output_dir = "/tmp/models"
|
| 73 |
gguf_file = os.path.join(output_dir, f"{hf_model_name.replace('/', '_')}.gguf")
|
| 74 |
quantized_file = gguf_file.replace(".gguf", f"-{quant_type}.gguf")
|
| 75 |
|
|
|
|
| 105 |
quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
|
| 106 |
if quantized_model_path:
|
| 107 |
with open(quantized_model_path, "rb") as f:
|
| 108 |
+
st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path))
|
|
|