Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,28 +8,6 @@
|
|
| 8 |
# PDF
|
| 9 |
# -------------------------
|
| 10 |
|
| 11 |
-
#!pip install PyPDF2
|
| 12 |
-
#!pip install pdfminer.six
|
| 13 |
-
#!pip install pdfplumber
|
| 14 |
-
#!pip install pdf2image
|
| 15 |
-
#!pip install Pillow
|
| 16 |
-
#!pip install pytesseract
|
| 17 |
-
#!pip install poppler-utils
|
| 18 |
-
#!pip install tesseract-ocr
|
| 19 |
-
#!pip install libtesseract-dev
|
| 20 |
-
|
| 21 |
-
#!pip install fastapi
|
| 22 |
-
#!pip install -q torch
|
| 23 |
-
#!pip install -q transformers
|
| 24 |
-
#!pip install -q gradio
|
| 25 |
-
#!pip install ffmpeg
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
#!apt-get install poppler-utils
|
| 29 |
-
#!apt install tesseract-ocr
|
| 30 |
-
#!apt install libtesseract-dev
|
| 31 |
-
|
| 32 |
-
|
| 33 |
# To read the PDF
|
| 34 |
import PyPDF2
|
| 35 |
# To analyze the PDF layout and extract text
|
|
@@ -281,35 +259,6 @@ pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-lea
|
|
| 281 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
| 282 |
|
| 283 |
|
| 284 |
-
text_per_page = read_pdf(pdf_path)
|
| 285 |
-
|
| 286 |
-
text_per_page.keys()
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
page_1 = text_per_page['Page_0']
|
| 290 |
-
|
| 291 |
-
# ============================================================================================
|
| 292 |
-
|
| 293 |
-
# picking up the abstract from the first page content
|
| 294 |
-
flag=False
|
| 295 |
-
abstract_sect=""
|
| 296 |
-
|
| 297 |
-
for i in range(len(page_1)):
|
| 298 |
-
if page_1[0][i].strip()=="Abstract":
|
| 299 |
-
flag=True
|
| 300 |
-
if page_1[0][i].strip()=="1 Introduction":
|
| 301 |
-
flag = False
|
| 302 |
-
if flag:
|
| 303 |
-
# abstract_sect contains the Abstract section content
|
| 304 |
-
abstract_sect+=page_1[0][i]
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
from transformers import pipeline
|
| 308 |
-
|
| 309 |
-
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
| 310 |
-
summary=(summarizer(abstract_sect))
|
| 311 |
-
summary_text=summary[0].get("summary_text")
|
| 312 |
-
print(summary_text)
|
| 313 |
|
| 314 |
|
| 315 |
|
|
@@ -333,8 +282,39 @@ def sentence_to_audio(summary_txt):
|
|
| 333 |
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
| 334 |
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf")
|
| 340 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
|
|
|
| 8 |
# PDF
|
| 9 |
# -------------------------
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# To read the PDF
|
| 12 |
import PyPDF2
|
| 13 |
# To analyze the PDF layout and extract text
|
|
|
|
| 259 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
| 260 |
|
| 261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
|
| 264 |
|
|
|
|
| 282 |
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
| 283 |
|
| 284 |
|
| 285 |
+
text_per_page = read_pdf(pdf_path)
|
| 286 |
+
text_per_page.keys()
|
| 287 |
+
page_1 = text_per_page['Page_0']
|
| 288 |
+
|
| 289 |
+
# ============================================================================================
|
| 290 |
+
|
| 291 |
+
# picking up the abstract from the first page content
|
| 292 |
+
#flag=False
|
| 293 |
+
#abstract_sect=""
|
| 294 |
+
|
| 295 |
+
#for i in range(len(page_1)):
|
| 296 |
+
# if page_1[0][i].strip()=="Abstract":
|
| 297 |
+
# flag=True
|
| 298 |
+
# if page_1[0][i].strip()=="1 Introduction":
|
| 299 |
+
# flag = False
|
| 300 |
+
# if flag:
|
| 301 |
+
# # abstract_sect contains the Abstract section content
|
| 302 |
+
# abstract_sect+=page_1[0][i]
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
#from transformers import pipeline
|
| 306 |
+
#
|
| 307 |
+
#summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
| 308 |
+
#summary=(summarizer(abstract_sect))
|
| 309 |
+
#summary_text=summary[0].get("summary_text")
|
| 310 |
+
#print(summary_text)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
# ===========================================================
|
| 314 |
+
|
| 315 |
+
summary_txt="It is dangerous to think of machine learning as a free-to-use toolkit, as it is common to incur ongoing maintenance costs in real-world ML systems"
|
| 316 |
+
|
| 317 |
+
sentence_to_audio(summary_txt)
|
| 318 |
|
| 319 |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf")
|
| 320 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|