Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- .gitattributes +1 -0
- 1812_05944.pdf +3 -0
- app.py +340 -0
- hidden-technical-debt-in-machine-learning-systems-Paper.pdf +0 -0
- packages.txt +3 -0
- requirements.txt +11 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
1812_05944.pdf filter=lfs diff=lfs merge=lfs -text
|
1812_05944.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c92dfcf7c47d641419c1f6355eaf21e4e9c644475452ac00c73f2298333188f
|
| 3 |
+
size 3077936
|
app.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ================================================================
|
| 2 |
+
# TESTING VERSION
|
| 3 |
+
# ALL-IN-ONE CELL VERSION
|
| 4 |
+
# OF THE PROGRAM
|
| 5 |
+
# ================================================================
|
| 6 |
+
#
|
| 7 |
+
# -------------------------
|
| 8 |
+
# PDF
|
| 9 |
+
# -------------------------
|
| 10 |
+
|
| 11 |
+
!pip install PyPDF2
|
| 12 |
+
!pip install pdfminer.six
|
| 13 |
+
!pip install pdfplumber
|
| 14 |
+
!pip install pdf2image
|
| 15 |
+
!pip install Pillow
|
| 16 |
+
!pip install pytesseract
|
| 17 |
+
!pip install poppler-utils
|
| 18 |
+
!pip install tesseract-ocr
|
| 19 |
+
!pip install libtesseract-dev
|
| 20 |
+
|
| 21 |
+
!pip install fastapi
|
| 22 |
+
!pip install -q torch
|
| 23 |
+
!pip install -q transformers
|
| 24 |
+
!pip install -q gradio
|
| 25 |
+
!pip install ffmpeg
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
#!apt-get install poppler-utils
|
| 29 |
+
#!apt install tesseract-ocr
|
| 30 |
+
#!apt install libtesseract-dev
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# To read the PDF
|
| 34 |
+
import PyPDF2
|
| 35 |
+
# To analyze the PDF layout and extract text
|
| 36 |
+
from pdfminer.high_level import extract_pages, extract_text
|
| 37 |
+
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
|
| 38 |
+
# To extract text from tables in PDF
|
| 39 |
+
import pdfplumber
|
| 40 |
+
# To extract the images from the PDFs
|
| 41 |
+
from PIL import Image
|
| 42 |
+
from pdf2image import convert_from_path
|
| 43 |
+
# To perform OCR to extract text from images
|
| 44 |
+
import pytesseract
|
| 45 |
+
# To remove the additional created files
|
| 46 |
+
import os
|
| 47 |
+
|
| 48 |
+
# -----------------------------------------------------------------------------
|
| 49 |
+
# Create a function to extract text
|
| 50 |
+
|
| 51 |
+
def text_extraction(element):
|
| 52 |
+
# Extracting the text from the in-line text element
|
| 53 |
+
line_text = element.get_text()
|
| 54 |
+
|
| 55 |
+
# Find the formats of the text
|
| 56 |
+
# Initialize the list with all the formats that appeared in the line of text
|
| 57 |
+
line_formats = []
|
| 58 |
+
for text_line in element:
|
| 59 |
+
if isinstance(text_line, LTTextContainer):
|
| 60 |
+
# Iterating through each character in the line of text
|
| 61 |
+
for character in text_line:
|
| 62 |
+
if isinstance(character, LTChar):
|
| 63 |
+
# Append the font name of the character
|
| 64 |
+
line_formats.append(character.fontname)
|
| 65 |
+
# Append the font size of the character
|
| 66 |
+
line_formats.append(character.size)
|
| 67 |
+
# Find the unique font sizes and names in the line
|
| 68 |
+
format_per_line = list(set(line_formats))
|
| 69 |
+
|
| 70 |
+
# Return a tuple with the text in each line along with its format
|
| 71 |
+
return (line_text, format_per_line)
|
| 72 |
+
|
| 73 |
+
# Create a function to crop the image elements from PDFs
|
| 74 |
+
def crop_image(element, pageObj):
|
| 75 |
+
# Get the coordinates to crop the image from the PDF
|
| 76 |
+
[image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
|
| 77 |
+
# Crop the page using coordinates (left, bottom, right, top)
|
| 78 |
+
pageObj.mediabox.lower_left = (image_left, image_bottom)
|
| 79 |
+
pageObj.mediabox.upper_right = (image_right, image_top)
|
| 80 |
+
# Save the cropped page to a new PDF
|
| 81 |
+
cropped_pdf_writer = PyPDF2.PdfWriter()
|
| 82 |
+
cropped_pdf_writer.add_page(pageObj)
|
| 83 |
+
# Save the cropped PDF to a new file
|
| 84 |
+
with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
|
| 85 |
+
cropped_pdf_writer.write(cropped_pdf_file)
|
| 86 |
+
|
| 87 |
+
# Create a function to convert the PDF to images
|
| 88 |
+
def convert_to_images(input_file,):
|
| 89 |
+
images = convert_from_path(input_file)
|
| 90 |
+
image = images[0]
|
| 91 |
+
output_file = "PDF_image.png"
|
| 92 |
+
image.save(output_file, "PNG")
|
| 93 |
+
|
| 94 |
+
# Create a function to read text from images
|
| 95 |
+
def image_to_text(image_path):
|
| 96 |
+
# Read the image
|
| 97 |
+
img = Image.open(image_path)
|
| 98 |
+
# Extract the text from the image
|
| 99 |
+
text = pytesseract.image_to_string(img)
|
| 100 |
+
return text
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Extracting tables from the page
|
| 104 |
+
|
| 105 |
+
def extract_table(pdf_path, page_num, table_num):
|
| 106 |
+
# Open the pdf file
|
| 107 |
+
pdf = pdfplumber.open(pdf_path)
|
| 108 |
+
# Find the examined page
|
| 109 |
+
table_page = pdf.pages[page_num]
|
| 110 |
+
# Extract the appropriate table
|
| 111 |
+
table = table_page.extract_tables()[table_num]
|
| 112 |
+
return table
|
| 113 |
+
|
| 114 |
+
# Convert table into the appropriate format
|
| 115 |
+
def table_converter(table):
|
| 116 |
+
table_string = ''
|
| 117 |
+
# Iterate through each row of the table
|
| 118 |
+
for row_num in range(len(table)):
|
| 119 |
+
row = table[row_num]
|
| 120 |
+
# Remove the line breaker from the wrapped texts
|
| 121 |
+
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
|
| 122 |
+
# Convert the table into a string
|
| 123 |
+
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
|
| 124 |
+
# Removing the last line break
|
| 125 |
+
table_string = table_string[:-1]
|
| 126 |
+
return table_string
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Extracting tables from the page
|
| 130 |
+
|
| 131 |
+
def extract_table(pdf_path, page_num, table_num):
|
| 132 |
+
# Open the pdf file
|
| 133 |
+
pdf = pdfplumber.open(pdf_path)
|
| 134 |
+
# Find the examined page
|
| 135 |
+
table_page = pdf.pages[page_num]
|
| 136 |
+
# Extract the appropriate table
|
| 137 |
+
table = table_page.extract_tables()[table_num]
|
| 138 |
+
return table
|
| 139 |
+
|
| 140 |
+
# Convert table into the appropriate format
|
| 141 |
+
def table_converter(table):
|
| 142 |
+
table_string = ''
|
| 143 |
+
# Iterate through each row of the table
|
| 144 |
+
for row_num in range(len(table)):
|
| 145 |
+
row = table[row_num]
|
| 146 |
+
# Remove the line breaker from the wrapped texts
|
| 147 |
+
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
|
| 148 |
+
# Convert the table into a string
|
| 149 |
+
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
|
| 150 |
+
# Removing the last line break
|
| 151 |
+
table_string = table_string[:-1]
|
| 152 |
+
return table_string
|
| 153 |
+
|
| 154 |
+
# ..............................................................
|
| 155 |
+
|
| 156 |
+
def read_pdf(pdf_path):
|
| 157 |
+
# create a PDF file object
|
| 158 |
+
pdfFileObj = open(pdf_path, 'rb')
|
| 159 |
+
# create a PDF reader object
|
| 160 |
+
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
|
| 161 |
+
|
| 162 |
+
# Create the dictionary to extract text from each image
|
| 163 |
+
text_per_page = {}
|
| 164 |
+
# We extract the pages from the PDF
|
| 165 |
+
for pagenum, page in enumerate(extract_pages(pdf_path)):
|
| 166 |
+
print("Elaborating Page_" +str(pagenum))
|
| 167 |
+
# Initialize the variables needed for the text extraction from the page
|
| 168 |
+
pageObj = pdfReaded.pages[pagenum]
|
| 169 |
+
page_text = []
|
| 170 |
+
line_format = []
|
| 171 |
+
text_from_images = []
|
| 172 |
+
text_from_tables = []
|
| 173 |
+
page_content = []
|
| 174 |
+
# Initialize the number of the examined tables
|
| 175 |
+
table_num = 0
|
| 176 |
+
first_element= True
|
| 177 |
+
table_extraction_flag= False
|
| 178 |
+
# Open the pdf file
|
| 179 |
+
pdf = pdfplumber.open(pdf_path)
|
| 180 |
+
# Find the examined page
|
| 181 |
+
page_tables = pdf.pages[pagenum]
|
| 182 |
+
# Find the number of tables on the page
|
| 183 |
+
tables = page_tables.find_tables()
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# Find all the elements
|
| 187 |
+
page_elements = [(element.y1, element) for element in page._objs]
|
| 188 |
+
# Sort all the elements as they appear in the page
|
| 189 |
+
page_elements.sort(key=lambda a: a[0], reverse=True)
|
| 190 |
+
|
| 191 |
+
# Find the elements that composed a page
|
| 192 |
+
for i,component in enumerate(page_elements):
|
| 193 |
+
# Extract the position of the top side of the element in the PDF
|
| 194 |
+
pos= component[0]
|
| 195 |
+
# Extract the element of the page layout
|
| 196 |
+
element = component[1]
|
| 197 |
+
|
| 198 |
+
# Check if the element is a text element
|
| 199 |
+
if isinstance(element, LTTextContainer):
|
| 200 |
+
# Check if the text appeared in a table
|
| 201 |
+
if table_extraction_flag == False:
|
| 202 |
+
# Use the function to extract the text and format for each text element
|
| 203 |
+
(line_text, format_per_line) = text_extraction(element)
|
| 204 |
+
# Append the text of each line to the page text
|
| 205 |
+
page_text.append(line_text)
|
| 206 |
+
# Append the format for each line containing text
|
| 207 |
+
line_format.append(format_per_line)
|
| 208 |
+
page_content.append(line_text)
|
| 209 |
+
else:
|
| 210 |
+
# Omit the text that appeared in a table
|
| 211 |
+
pass
|
| 212 |
+
|
| 213 |
+
# Check the elements for images
|
| 214 |
+
if isinstance(element, LTFigure):
|
| 215 |
+
# Crop the image from the PDF
|
| 216 |
+
crop_image(element, pageObj)
|
| 217 |
+
# Convert the cropped pdf to an image
|
| 218 |
+
convert_to_images('cropped_image.pdf')
|
| 219 |
+
# Extract the text from the image
|
| 220 |
+
image_text = image_to_text('PDF_image.png')
|
| 221 |
+
text_from_images.append(image_text)
|
| 222 |
+
page_content.append(image_text)
|
| 223 |
+
# Add a placeholder in the text and format lists
|
| 224 |
+
page_text.append('image')
|
| 225 |
+
line_format.append('image')
|
| 226 |
+
|
| 227 |
+
# Check the elements for tables
|
| 228 |
+
if isinstance(element, LTRect):
|
| 229 |
+
# If the first rectangular element
|
| 230 |
+
if first_element == True and (table_num+1) <= len(tables):
|
| 231 |
+
# Find the bounding box of the table
|
| 232 |
+
lower_side = page.bbox[3] - tables[table_num].bbox[3]
|
| 233 |
+
upper_side = element.y1
|
| 234 |
+
# Extract the information from the table
|
| 235 |
+
table = extract_table(pdf_path, pagenum, table_num)
|
| 236 |
+
# Convert the table information in structured string format
|
| 237 |
+
table_string = table_converter(table)
|
| 238 |
+
# Append the table string into a list
|
| 239 |
+
text_from_tables.append(table_string)
|
| 240 |
+
page_content.append(table_string)
|
| 241 |
+
# Set the flag as True to avoid the content again
|
| 242 |
+
table_extraction_flag = True
|
| 243 |
+
# Make it another element
|
| 244 |
+
first_element = False
|
| 245 |
+
# Add a placeholder in the text and format lists
|
| 246 |
+
page_text.append('table')
|
| 247 |
+
line_format.append('table')
|
| 248 |
+
|
| 249 |
+
# Check if we already extracted the tables from the page
|
| 250 |
+
if element.y0 >= lower_side and element.y1 <= upper_side:
|
| 251 |
+
pass
|
| 252 |
+
elif not isinstance(page_elements[i+1][1], LTRect):
|
| 253 |
+
table_extraction_flag = False
|
| 254 |
+
first_element = True
|
| 255 |
+
table_num+=1
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
# Create the key of the dictionary
|
| 259 |
+
dctkey = 'Page_'+str(pagenum)
|
| 260 |
+
# Add the list of list as the value of the page key
|
| 261 |
+
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
|
| 262 |
+
|
| 263 |
+
# Closing the pdf file object
|
| 264 |
+
pdfFileObj.close()
|
| 265 |
+
|
| 266 |
+
# Deleting the additional files created
|
| 267 |
+
# os.remove('cropped_image.pdf')
|
| 268 |
+
# os.remove('PDF_image.png')
|
| 269 |
+
return text_per_page
|
| 270 |
+
|
| 271 |
+
# mount drive location
|
| 272 |
+
|
| 273 |
+
#from google.colab import drive
|
| 274 |
+
#drive.mount('/content/drive')
|
| 275 |
+
|
| 276 |
+
#pdf_path = 'C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/NIPS-2015-hidden-technical-debt-in-machine-learning-systems-Paper.pdf'
|
| 277 |
+
pdf_path="C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/hidden-technical-debt-in-machine-learning-systems-Paper.pdf"
|
| 278 |
+
pdf_path2="C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/1812_05944.pdf"
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
text_per_page = read_pdf(pdf_path)
|
| 282 |
+
|
| 283 |
+
text_per_page.keys()
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
page_1 = text_per_page['Page_0']
|
| 287 |
+
|
| 288 |
+
# ============================================================================================
|
| 289 |
+
|
| 290 |
+
# picking up the abstract from the first page content
|
| 291 |
+
flag=False
|
| 292 |
+
abstract_sect=""
|
| 293 |
+
|
| 294 |
+
for i in range(len(page_1)):
|
| 295 |
+
if page_1[0][i].strip()=="Abstract":
|
| 296 |
+
flag=True
|
| 297 |
+
if page_1[0][i].strip()=="1 Introduction":
|
| 298 |
+
flag = False
|
| 299 |
+
if flag:
|
| 300 |
+
# abstract_sect contains the Abstract section content
|
| 301 |
+
abstract_sect+=page_1[0][i]
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
from transformers import pipeline
|
| 305 |
+
|
| 306 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
| 307 |
+
summary=(summarizer(abstract_sect))
|
| 308 |
+
summary_text=summary[0].get("summary_text")
|
| 309 |
+
print(summary_text)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
# =======================================
|
| 314 |
+
|
| 315 |
+
import gradio as gr
|
| 316 |
+
from transformers import pipeline, AutoProcessor, AutoModel
|
| 317 |
+
# =======================================
|
| 318 |
+
#
|
| 319 |
+
# =======================================
|
| 320 |
+
def sentence_to_audio(summary_text):
|
| 321 |
+
# Sentence 2 Speech
|
| 322 |
+
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
| 323 |
+
model = AutoModel.from_pretrained("suno/bark-small")
|
| 324 |
+
inputs = processor(
|
| 325 |
+
text=summary_text,
|
| 326 |
+
return_tensors="pt",
|
| 327 |
+
)
|
| 328 |
+
speech_values = model.generate(**inputs, do_sample=True)
|
| 329 |
+
sampling_rate = model.generation_config.sample_rate
|
| 330 |
+
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
summary_txt="It is dangerous to think of machine learning as a free-to-use toolkit, as it is common to incur ongoing maintenance costs in real-world ML systems"
|
| 334 |
+
sentence_to_audio(summary_txt)
|
| 335 |
+
|
| 336 |
+
pdf_path="C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/hidden-technical-debt-in-machine-learning-systems-Paper.pdf"
|
| 337 |
+
pdf_path2="C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/1812_05944.pdf"
|
| 338 |
+
|
| 339 |
+
demo = gr.Interface(fn=sentence_to_audio, inputs="file", outputs="audio",examples=[pdf_path,pdf_path2])
|
| 340 |
+
demo.launch(share=True)
|
hidden-technical-debt-in-machine-learning-systems-Paper.pdf
ADDED
|
Binary file (166 kB). View file
|
|
|
packages.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
poppler-utils
|
| 2 |
+
tesseract-ocr
|
| 3 |
+
libtesseract-dev
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
gradio
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
ffmpeg
|
| 6 |
+
PyPDF2
|
| 7 |
+
pdfminer.six
|
| 8 |
+
pdfplumber
|
| 9 |
+
pdf2image
|
| 10 |
+
Pillow
|
| 11 |
+
pytesseract
|