Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,36 +2,54 @@ from fastapi import FastAPI
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
import os
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
| 11 |
|
| 12 |
-
#
|
| 13 |
try:
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
except Exception as e:
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
# 4. 接口定义
|
| 20 |
@app.post("/detect")
|
| 21 |
async def detect(code: str):
|
| 22 |
try:
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
inputs = tokenizer(code, return_tensors="pt", truncation=True)
|
| 28 |
with torch.no_grad():
|
| 29 |
outputs = model(**inputs)
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
return {
|
| 32 |
-
"label": model.config.id2label[
|
| 33 |
-
"score": outputs.logits.softmax(dim=-1).
|
| 34 |
}
|
| 35 |
|
| 36 |
except Exception as e:
|
| 37 |
-
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
+
import logging
|
| 6 |
|
| 7 |
+
# 初始化日志
|
| 8 |
+
logging.basicConfig(level=logging.INFO)
|
| 9 |
+
logger = logging.getLogger("CodeSecurityAPI")
|
| 10 |
|
| 11 |
+
# 强制设置缓存路径(解决权限问题)
|
| 12 |
os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
| 13 |
|
| 14 |
+
# 加载模型
|
| 15 |
try:
|
| 16 |
+
logger.info("Loading model...")
|
| 17 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 18 |
+
"mrm8488/codebert-base-finetuned-detect-insecure-code",
|
| 19 |
+
cache_dir=os.getenv("HF_HOME")
|
| 20 |
+
)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 22 |
+
"mrm8488/codebert-base-finetuned-detect-insecure-code",
|
| 23 |
+
cache_dir=os.getenv("HF_HOME")
|
| 24 |
+
)
|
| 25 |
+
logger.info("Model loaded successfully")
|
| 26 |
except Exception as e:
|
| 27 |
+
logger.error(f"Model load failed: {str(e)}")
|
| 28 |
+
raise RuntimeError("模型加载失败,请检查网络连接或模型路径")
|
| 29 |
+
|
| 30 |
+
app = FastAPI()
|
| 31 |
|
|
|
|
| 32 |
@app.post("/detect")
|
| 33 |
async def detect(code: str):
|
| 34 |
try:
|
| 35 |
+
# 输入处理(限制长度)
|
| 36 |
+
code = code[:2000] # 截断超长输入
|
| 37 |
+
|
| 38 |
+
# 模型推理
|
| 39 |
+
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512)
|
| 40 |
with torch.no_grad():
|
| 41 |
outputs = model(**inputs)
|
| 42 |
+
|
| 43 |
+
# 解析结果
|
| 44 |
+
label_id = outputs.logits.argmax().item()
|
| 45 |
return {
|
| 46 |
+
"label": model.config.id2label[label_id],
|
| 47 |
+
"score": outputs.logits.softmax(dim=-1)[0][label_id].item()
|
| 48 |
}
|
| 49 |
|
| 50 |
except Exception as e:
|
| 51 |
+
return {"error": str(e)}
|
| 52 |
+
|
| 53 |
+
@app.get("/health")
|
| 54 |
+
async def health():
|
| 55 |
+
return {"status": "ok"}
|