Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,18 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
-
import gradio as gr
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import torch
|
| 6 |
import os
|
| 7 |
|
| 8 |
-
# === FastAPI
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
-
#
|
| 12 |
app.add_middleware(
|
| 13 |
CORSMiddleware,
|
| 14 |
-
allow_origins=["*"],
|
| 15 |
-
allow_methods=["*"],
|
| 16 |
-
allow_headers=["*"],
|
| 17 |
)
|
| 18 |
|
| 19 |
# === 模型加载 ===
|
|
@@ -23,30 +22,15 @@ tokenizer = AutoTokenizer.from_pretrained("mrm8488/codebert-base-finetuned-detec
|
|
| 23 |
|
| 24 |
# === HTTP API 接口 ===
|
| 25 |
@app.post("/detect")
|
| 26 |
-
async def
|
| 27 |
-
"""HTTP API 接口"""
|
| 28 |
try:
|
| 29 |
inputs = tokenizer(code[:2000], return_tensors="pt", truncation=True, max_length=512)
|
| 30 |
with torch.no_grad():
|
| 31 |
outputs = model(**inputs)
|
| 32 |
label_id = outputs.logits.argmax().item()
|
| 33 |
return {
|
| 34 |
-
"label": int(label_id), #
|
| 35 |
"score": outputs.logits.softmax(dim=-1)[0][label_id].item()
|
| 36 |
}
|
| 37 |
except Exception as e:
|
| 38 |
-
return {"error": str(e)}
|
| 39 |
-
|
| 40 |
-
# === Gradio 界面(可选)===
|
| 41 |
-
def gradio_predict(code: str):
|
| 42 |
-
result = api_detect(code)
|
| 43 |
-
return f"Prediction: {result['label']} (Confidence: {result['score']:.2f})"
|
| 44 |
-
|
| 45 |
-
gr_interface = gr.Interface(
|
| 46 |
-
fn=gradio_predict,
|
| 47 |
-
inputs=gr.Textbox(lines=10, placeholder="Paste code here..."),
|
| 48 |
-
outputs="text",
|
| 49 |
-
title="Code Security Detector"
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
app = gr.mount_gradio_app(app, gr_interface, path="/")
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
|
| 7 |
+
# === FastAPI 配置 ===
|
| 8 |
app = FastAPI()
|
| 9 |
|
| 10 |
+
# 解决 CSP 限制的关键配置
|
| 11 |
app.add_middleware(
|
| 12 |
CORSMiddleware,
|
| 13 |
+
allow_origins=["*"],
|
| 14 |
+
allow_methods=["*"],
|
| 15 |
+
allow_headers=["*"],
|
| 16 |
)
|
| 17 |
|
| 18 |
# === 模型加载 ===
|
|
|
|
| 22 |
|
| 23 |
# === HTTP API 接口 ===
|
| 24 |
@app.post("/detect")
|
| 25 |
+
async def detect(code: str):
|
|
|
|
| 26 |
try:
|
| 27 |
inputs = tokenizer(code[:2000], return_tensors="pt", truncation=True, max_length=512)
|
| 28 |
with torch.no_grad():
|
| 29 |
outputs = model(**inputs)
|
| 30 |
label_id = outputs.logits.argmax().item()
|
| 31 |
return {
|
| 32 |
+
"label": int(label_id), # 严格返回 0/1
|
| 33 |
"score": outputs.logits.softmax(dim=-1)[0][label_id].item()
|
| 34 |
}
|
| 35 |
except Exception as e:
|
| 36 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|