Spaces:
Runtime error
Runtime error
| import contextlib | |
| import time | |
| from enum import IntEnum | |
| from typing import Dict, List, NamedTuple, Optional, Set, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from vllm.attention import (AttentionMetadata, AttentionMetadataPerStage, | |
| get_attn_backend) | |
| from vllm.config import (DeviceConfig, LoadConfig, LoRAConfig, ModelConfig, | |
| ParallelConfig, SchedulerConfig, VisionLanguageConfig) | |
| from vllm.distributed import broadcast_tensor_dict, with_pynccl_for_all_reduce | |
| from vllm.distributed.device_communicators import (custom_all_reduce, | |
| pynccl_utils) | |
| from vllm.logger import init_logger | |
| from vllm.lora.layers import LoRAMapping | |
| from vllm.lora.request import LoRARequest | |
| from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager | |
| from vllm.model_executor import SamplingMetadata | |
| from vllm.model_executor.model_loader import get_model | |
| from vllm.sampling_params import SamplingParams, SamplingType | |
| from vllm.sequence import (MultiModalData, SamplerOutput, SequenceData, | |
| SequenceGroupMetadata) | |
| from vllm.utils import (CudaMemoryProfiler, async_tensor_h2d, is_hip, | |
| is_pin_memory_available, make_tensor_with_pad, | |
| maybe_expand_dim) | |
| from serve.gpt_model import GPT_models | |
| logger = init_logger(__name__) | |
| _PAD_SLOT_ID = -1 | |
| LORA_WARMUP_RANK = 8 | |
| _BATCH_SIZE_ALIGNMENT = 8 | |
| # Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256. | |
| # NOTE: _get_graph_batch_size needs to be updated if this list is changed. | |
| _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [ | |
| _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33) | |
| ] | |
| class PreparePromptMetadata(NamedTuple): | |
| input_tokens: List[int] | |
| input_positions: List[int] | |
| attn_metadata: Optional[AttentionMetadataPerStage] | |
| prompt_lens: List[int] | |
| subquery_lens: List[int] | |
| lora_index_mapping: List[int] | |
| lora_prompt_mapping: List[int] | |
| lora_requests: Set[LoRARequest] | |
| multi_modal_input: Optional[torch.Tensor] | |
| slot_mapping: List[int] | |
| def empty(cls): | |
| return PreparePromptMetadata( | |
| input_tokens=[], | |
| input_positions=[], | |
| attn_metadata=None, | |
| prompt_lens=[], | |
| subquery_lens=[], | |
| lora_index_mapping=[], | |
| lora_prompt_mapping=[], | |
| lora_requests=set(), | |
| multi_modal_input=None, | |
| slot_mapping=[], | |
| ) | |
| class PrepareDecodeMetadata(NamedTuple): | |
| input_tokens: List[int] | |
| input_positions: List[int] | |
| attn_metadata: Optional[AttentionMetadata] | |
| lora_index_mapping: List[int] | |
| lora_prompt_mapping: List[int] | |
| lora_requests: Set[LoRARequest] | |
| slot_mapping: List[int] | |
| def empty(cls): | |
| return PrepareDecodeMetadata( | |
| input_tokens=[], | |
| input_positions=[], | |
| attn_metadata=None, | |
| lora_index_mapping=[], | |
| lora_prompt_mapping=[], | |
| lora_requests=set(), | |
| slot_mapping=[], | |
| ) | |
| # How batches are constructed. | |
| class BatchType(IntEnum): | |
| # Every batch is prefill. | |
| PREFILL = 0 | |
| # Every batch is decode. | |
| DECODE = 1 | |
| # Batch is a mixture of prefill and decode. | |
| MIXED = 2 | |
| class ModelRunner: | |
| def __init__( | |
| self, | |
| model_config: ModelConfig, | |
| parallel_config: ParallelConfig, | |
| scheduler_config: SchedulerConfig, | |
| device_config: DeviceConfig, | |
| load_config: LoadConfig, | |
| lora_config: Optional[LoRAConfig], | |
| kv_cache_dtype: Optional[str] = "auto", | |
| is_driver_worker: bool = False, | |
| vision_language_config: Optional[VisionLanguageConfig] = None, | |
| ): | |
| self.model_config = model_config | |
| self.parallel_config = parallel_config | |
| self.scheduler_config = scheduler_config | |
| self.lora_config = lora_config | |
| self.load_config = load_config | |
| self.is_driver_worker = is_driver_worker | |
| # model_config can be None in tests/samplers/test_sampler.py. | |
| # FIXME(woosuk): This is a hack to make the tests work. Refactor this. | |
| self.sliding_window = (model_config.get_sliding_window() | |
| if model_config is not None else None) | |
| self.device_config = (device_config | |
| if device_config is not None else DeviceConfig()) | |
| self.device = self.device_config.device | |
| # Set after load_model. | |
| self.lora_manager: LRUCacheWorkerLoRAManager = None | |
| self.graph_runners: Dict[int, CUDAGraphRunner] = {} | |
| self.graph_memory_pool: Optional[Tuple[ | |
| int, int]] = None # Set during graph capture. | |
| self.max_context_len_to_capture = ( | |
| self.model_config.max_context_len_to_capture | |
| if self.model_config is not None else 0) | |
| self.pin_memory = is_pin_memory_available() | |
| self.kv_cache_dtype = kv_cache_dtype | |
| self.vision_language_config = vision_language_config | |
| self.attn_backend = get_attn_backend( | |
| self.model_config.dtype if model_config is not None else None) | |
| # Lazy initialization | |
| self.model: torch.nn.Module # Set after load_model | |
| self.block_size: int # Set after initial profiling. | |
| # When using CUDA graph, the input block tables must be padded to | |
| # max_context_len_to_capture. However, creating the block table in | |
| # Python can be expensive. To optimize this, we cache the block table | |
| # in numpy and only copy the actual input content at every iteration. | |
| # The shape of the cached block table will be | |
| # (max batch size to capture, max context len to capture / block size). | |
| self.graph_block_tables: torch.Tensor # Set after initial profiling. | |
| def load_model(self, args) -> None: | |
| with CudaMemoryProfiler() as m: | |
| precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] | |
| latent_size = args.image_size // args.downsample_size | |
| gpt_model = GPT_models[args.gpt_model]( | |
| vocab_size=args.codebook_size, | |
| block_size=latent_size ** 2, | |
| num_classes=args.num_classes, | |
| cls_token_num=args.cls_token_num, | |
| model_type=args.gpt_type, | |
| cfg_scale=args.cfg_scale, | |
| ).to(device='cuda', dtype=precision) # TODO: make device configurable | |
| checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") | |
| if args.from_fsdp: # fspd | |
| model_weight = checkpoint | |
| elif "model" in checkpoint: # ddp | |
| model_weight = checkpoint["model"] | |
| elif "state_dict" in checkpoint: | |
| model_weight = checkpoint["state_dict"] | |
| else: | |
| raise Exception("please check model weight") | |
| gpt_model.custom_load_state_dict(model_weight) | |
| gpt_model.eval() | |
| del checkpoint | |
| self.model = gpt_model | |
| self.model_memory_usage = m.consumed_memory | |
| logger.info(f"Loading model weights took " | |
| f"{self.model_memory_usage / float(2**30):.4f} GB") | |
| if self.lora_config: | |
| assert hasattr(self.model, "supported_lora_modules" | |
| ) and self.model.supported_lora_modules, ( | |
| "Model does not support LoRA") | |
| assert hasattr( | |
| self.model, | |
| "embedding_modules"), "Model does not have embedding_modules" | |
| assert hasattr(self.model, "embedding_padding_modules" | |
| ), "Model does not have embedding_padding_modules" | |
| self.lora_manager = LRUCacheWorkerLoRAManager( | |
| self.scheduler_config.max_num_seqs, | |
| self.scheduler_config.max_num_batched_tokens, self.vocab_size, | |
| self.lora_config, self.device, self.model.embedding_modules, | |
| self.model.embedding_padding_modules) | |
| self.model = self.lora_manager.create_lora_manager(self.model) | |
| if self.kv_cache_dtype == "fp8" and is_hip(): | |
| # Currently scaled KV cache is only enabled on ROCm | |
| if self.model_config.quantization_param_path is not None: | |
| if callable(getattr(self.model, "load_kv_cache_scales", None)): | |
| self.model.load_kv_cache_scales( | |
| self.model_config.quantization_param_path) | |
| else: | |
| raise RuntimeError("Using FP8 KV cache and scaling " | |
| "factors provided but model " | |
| f"{self.model.__class__} does not " | |
| "support loading scaling factors.") | |
| else: | |
| logger.warn("Using FP8 KV cache but no scaling factors " | |
| "provided. Defaulting to scaling factors of 1.0. " | |
| "This may lead to less accurate results!") | |
| elif self.model_config.quantization_param_path is not None: | |
| logger.warn("KV cache scaling factors provided, " | |
| "but the KV cache data type is not FP8. " | |
| "KV cache scaling factors will not be used.") | |
| def set_block_size(self, block_size: int) -> None: | |
| self.block_size = block_size | |
| self.graph_block_tables = np.zeros( | |
| (max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()), | |
| dtype=np.int32) | |
| def get_max_block_per_batch(self) -> int: | |
| block_size = self.block_size | |
| return (self.max_context_len_to_capture + block_size - 1) // block_size | |
| def _prepare_prompt( | |
| self, | |
| seq_group_metadata_list: List[SequenceGroupMetadata], | |
| ) -> PreparePromptMetadata: | |
| input_tokens: List[int] = [] | |
| input_positions: List[int] = [] | |
| slot_mapping: List[int] = [] | |
| lora_index_mapping: List[int] = [] | |
| lora_prompt_mapping: List[int] = [] | |
| lora_requests: Set[LoRARequest] = set() | |
| prompt_lens: List[int] = [] | |
| context_lens: List[int] = [] | |
| subquery_lens: List[int] = [] | |
| prefix_block_tables: List[List[int]] = [] | |
| multi_modal_input_list: List[torch.Tensor] = [] | |
| if len(seq_group_metadata_list) == 0: | |
| return PreparePromptMetadata.empty() | |
| for seq_group_metadata in seq_group_metadata_list: | |
| assert seq_group_metadata.is_prompt | |
| seq_ids = list(seq_group_metadata.seq_data.keys()) | |
| assert len(seq_ids) == 1 | |
| seq_id = seq_ids[0] | |
| computed_block_nums = seq_group_metadata.computed_block_nums | |
| if (self.scheduler_config is not None | |
| and self.scheduler_config.chunked_prefill_enabled | |
| and not (computed_block_nums is None | |
| or computed_block_nums == [])): | |
| raise RuntimeError( | |
| "chunked prefill cannot be used with prefix caching " | |
| "now.") | |
| token_chunk_size = seq_group_metadata.token_chunk_size | |
| seq_data = seq_group_metadata.seq_data[seq_id] | |
| computed_len = seq_data.get_num_computed_tokens() | |
| # We should use get_len here because in case of preemption | |
| # it contains output tokens. | |
| prefill_end = min(seq_data.get_len(), | |
| computed_len + token_chunk_size) | |
| prompt_tokens = seq_data.get_token_ids()[computed_len:prefill_end] | |
| prompt_len = prefill_end | |
| prompt_lens.append(prompt_len) | |
| # NOTE: This only works for oooooooxxx style attention. | |
| if computed_block_nums is not None and len( | |
| computed_block_nums) > 0 and self.sliding_window is None: | |
| # Prefix is not supported with sliding_window | |
| computed_len = len(computed_block_nums) * self.block_size | |
| prompt_tokens = prompt_tokens[computed_len:] | |
| prefix_block_tables.append(computed_block_nums) | |
| elif self.scheduler_config.chunked_prefill_enabled: | |
| if seq_group_metadata.block_tables is not None: | |
| # Prefill has chunked before. | |
| block_table = seq_group_metadata.block_tables[seq_id] | |
| prefix_block_tables.append(block_table) | |
| else: | |
| # The first prefill. | |
| prefix_block_tables.append([]) | |
| else: | |
| prefix_block_tables.append([]) | |
| # Right now, prefill start is always 0. However, this | |
| # assumption can be changed once chunked prefill is introduced. | |
| assert computed_len == 0 | |
| # actual prompt lens | |
| context_lens.append(computed_len) | |
| subquery_lens.append(prompt_len - computed_len) | |
| input_tokens.extend(prompt_tokens) | |
| # NOTE(woosuk): Here we assume that the first token in the prompt | |
| # is always the first token in the sequence. | |
| input_positions.extend(list(range(computed_len, prefill_end))) | |
| lora_id = seq_group_metadata.lora_int_id | |
| if lora_id > 0: | |
| lora_requests.add(seq_group_metadata.lora_request) | |
| lora_index_mapping += [lora_id] * (prompt_len - computed_len) | |
| lora_prompt_mapping.extend( | |
| [lora_id] * | |
| (prompt_len - computed_len | |
| if seq_group_metadata.sampling_params.prompt_logprobs else 1)) | |
| if seq_group_metadata.multi_modal_data: | |
| multi_modal_input_list.append( | |
| seq_group_metadata.multi_modal_data.data) | |
| if seq_group_metadata.block_tables is None: | |
| # During memory profiling, the block tables are not initialized | |
| # yet. In this case, we just use a dummy slot mapping. | |
| slot_mapping.extend([_PAD_SLOT_ID] * prompt_len) | |
| continue | |
| # Compute the slot mapping. | |
| block_table = seq_group_metadata.block_tables[seq_id] | |
| # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID, | |
| # where start_idx is max(0, prompt_len - sliding_window). | |
| # For example, if the prompt len is 10, sliding window is 8, and | |
| # block size is 4, the first two tokens are masked and the slot | |
| # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1]. | |
| start_idx = 0 | |
| if self.sliding_window is not None: | |
| assert computed_len == 0, ( | |
| "Prefix caching is currently not supported with " | |
| "sliding window attention") | |
| start_idx = max(0, prompt_len - self.sliding_window) | |
| for i in range(computed_len, prefill_end): | |
| if i < start_idx: | |
| slot_mapping.append(_PAD_SLOT_ID) | |
| continue | |
| block_number = block_table[i // self.block_size] | |
| block_offset = i % self.block_size | |
| slot = block_number * self.block_size + block_offset | |
| slot_mapping.append(slot) | |
| max_subquery_len = max(subquery_lens) | |
| max_prompt_len = max(prompt_lens) | |
| assert max_subquery_len > 0 | |
| context_lens_tensor = torch.tensor(context_lens, | |
| dtype=torch.int, | |
| device=self.device) | |
| if multi_modal_input_list: | |
| assert self.vision_language_config, ( | |
| "Multi-modal inputs are only supported by " | |
| "vision language models.") | |
| multi_modal_input = torch.cat(multi_modal_input_list, | |
| dim=0).to(self.device) | |
| else: | |
| multi_modal_input = None | |
| # Prepare prefix block tables | |
| max_prompt_block_table_len = max(len(t) for t in prefix_block_tables) | |
| block_tables = make_tensor_with_pad( | |
| prefix_block_tables, | |
| max_len=max_prompt_block_table_len, | |
| pad=0, | |
| dtype=torch.int, | |
| device=self.device, | |
| ) | |
| # Query length can be shorter than key (i.e., prompt) when prefill | |
| # is chunked or prefix cached. | |
| subquery_lens_tensor = torch.tensor(subquery_lens, | |
| dtype=torch.long, | |
| device=self.device) | |
| subquery_start_loc = torch.zeros(subquery_lens_tensor.shape[0] + 1, | |
| dtype=torch.int32, | |
| device=self.device) | |
| prompt_lens_tensor = torch.tensor(prompt_lens, | |
| dtype=torch.long, | |
| device=self.device) | |
| seq_start_loc = torch.zeros(prompt_lens_tensor.shape[0] + 1, | |
| dtype=torch.int32, | |
| device=self.device) | |
| torch.cumsum(subquery_lens_tensor, | |
| dim=0, | |
| dtype=subquery_start_loc.dtype, | |
| out=subquery_start_loc[1:]) | |
| torch.cumsum(prompt_lens_tensor, | |
| dim=0, | |
| dtype=seq_start_loc.dtype, | |
| out=seq_start_loc[1:]) | |
| attn_metadata = self.attn_backend.make_metadata( | |
| is_prompt=True, | |
| prompt_lens=prompt_lens, | |
| prompt_lens_tensor=prompt_lens_tensor, | |
| max_subquery_len=max_subquery_len, | |
| max_context_len=None, | |
| max_prompt_len=max_prompt_len, | |
| subquery_start_loc=subquery_start_loc, | |
| seq_start_loc=seq_start_loc, | |
| context_lens=context_lens_tensor, | |
| block_tables=block_tables, | |
| use_cuda_graph=False, | |
| ) | |
| return PreparePromptMetadata( | |
| input_tokens=input_tokens, | |
| input_positions=input_positions, | |
| attn_metadata=attn_metadata, | |
| prompt_lens=prompt_lens, | |
| subquery_lens=subquery_lens, | |
| lora_index_mapping=lora_index_mapping, | |
| lora_prompt_mapping=lora_prompt_mapping, | |
| lora_requests=lora_requests, | |
| multi_modal_input=multi_modal_input, | |
| slot_mapping=slot_mapping, | |
| ) | |
| def _prepare_decode( | |
| self, | |
| seq_group_metadata_list: List[SequenceGroupMetadata], | |
| ) -> PrepareDecodeMetadata: | |
| input_tokens: List[int] = [] | |
| input_positions: List[int] = [] | |
| slot_mapping: List[int] = [] | |
| context_lens: List[int] = [] | |
| block_tables: List[List[int]] = [] | |
| lora_index_mapping: List[int] = [] | |
| lora_prompt_mapping: List[int] = [] | |
| lora_requests: Set[LoRARequest] = set() | |
| if len(seq_group_metadata_list) == 0: | |
| return PrepareDecodeMetadata.empty() | |
| for seq_group_metadata in seq_group_metadata_list: | |
| assert not seq_group_metadata.is_prompt | |
| assert seq_group_metadata.token_chunk_size == 1 | |
| seq_ids = list(seq_group_metadata.seq_data.keys()) | |
| lora_id = seq_group_metadata.lora_int_id | |
| if lora_id > 0: | |
| lora_requests.add(seq_group_metadata.lora_request) | |
| for seq_id in seq_ids: | |
| seq_data = seq_group_metadata.seq_data[seq_id] | |
| generation_token = seq_data.get_last_token_id() | |
| input_tokens.append(generation_token) | |
| seq_len = seq_data.get_len() | |
| position = seq_len - 1 | |
| input_positions.append(position) | |
| context_len = seq_len if self.sliding_window is None else min( | |
| seq_len, self.sliding_window) | |
| context_lens.append(context_len) | |
| block_table = seq_group_metadata.block_tables[seq_id] | |
| block_number = block_table[position // self.block_size] | |
| block_offset = position % self.block_size | |
| slot = block_number * self.block_size + block_offset | |
| slot_mapping.append(slot) | |
| lora_index_mapping.append(lora_id) | |
| lora_prompt_mapping.append(lora_id) | |
| if self.sliding_window is not None: | |
| sliding_window_blocks = (self.sliding_window // | |
| self.block_size) | |
| block_table = block_table[-sliding_window_blocks:] | |
| block_tables.append(block_table) | |
| # vLLM uses cuda graph only for decoding requests. | |
| # See `capture_model` API for more details. | |
| # For decoding requests, batch_size == input_tokens. | |
| batch_size = len(input_tokens) | |
| max_context_len = max(context_lens) | |
| use_captured_graph = ( | |
| not self.model_config.enforce_eager | |
| and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1] | |
| and max_context_len <= self.max_context_len_to_capture) | |
| if use_captured_graph: | |
| graph_batch_size = _get_graph_batch_size(batch_size) | |
| assert graph_batch_size >= batch_size | |
| for _ in range(graph_batch_size - batch_size): | |
| input_tokens.append(0) | |
| input_positions.append(0) | |
| slot_mapping.append(_PAD_SLOT_ID) | |
| context_lens.append(1) | |
| block_tables.append([]) | |
| lora_index_mapping.append(0) | |
| batch_size = graph_batch_size | |
| context_lens_tensor = torch.tensor(context_lens, | |
| dtype=torch.int, | |
| device=self.device) | |
| if use_captured_graph: | |
| # When using cuda-graph all these tensors should be | |
| # padded. | |
| assert context_lens_tensor.shape[0] == len(input_tokens) | |
| assert context_lens_tensor.shape[0] == len(input_positions) | |
| assert context_lens_tensor.shape[0] == len(slot_mapping) | |
| # The shape of graph_block_tables is | |
| # [max batch size, max context len // block size]. | |
| input_block_tables = self.graph_block_tables[:batch_size] | |
| for i, block_table in enumerate(block_tables): | |
| if block_table: | |
| input_block_tables[i, :len(block_table)] = block_table | |
| block_tables = torch.tensor(input_block_tables, device=self.device) | |
| else: | |
| max_block_table_len = max( | |
| len(block_table) for block_table in block_tables) | |
| block_tables = make_tensor_with_pad( | |
| block_tables, | |
| max_len=max_block_table_len, | |
| pad=0, | |
| dtype=torch.int, | |
| device=self.device, | |
| ) | |
| attn_metadata = self.attn_backend.make_metadata( | |
| is_prompt=False, | |
| prompt_lens=None, | |
| prompt_lens_tensor=None, | |
| max_subquery_len=None, | |
| max_context_len=max_context_len, | |
| max_prompt_len=None, | |
| subquery_start_loc=None, | |
| seq_start_loc=None, | |
| context_lens=context_lens_tensor, | |
| block_tables=block_tables, | |
| use_cuda_graph=use_captured_graph, | |
| ) | |
| return PrepareDecodeMetadata( | |
| input_tokens=input_tokens, | |
| input_positions=input_positions, | |
| attn_metadata=attn_metadata, | |
| lora_index_mapping=lora_index_mapping, | |
| lora_prompt_mapping=lora_prompt_mapping, | |
| lora_requests=lora_requests, | |
| slot_mapping=slot_mapping, | |
| ) | |
| def _prepare_sample( | |
| self, | |
| seq_group_metadata_list: List[SequenceGroupMetadata], | |
| prompt_lens: List[int], | |
| subquery_lens: Optional[List[int]], | |
| ) -> SamplingMetadata: | |
| seq_groups: List[Tuple[List[int], SamplingParams]] = [] | |
| selected_token_indices: List[int] = [] | |
| generators: List[torch.Generator] = [] | |
| selected_token_start_idx = 0 | |
| categorized_sample_indices: Dict[SamplingType, | |
| List[Tuple[int, int]]] = { | |
| t: [] | |
| for t in SamplingType | |
| } | |
| categorized_sample_indices_start_idx = 0 | |
| categorized_sampled_token_indices_start_idx = 0 | |
| for i, seq_group_metadata in enumerate(seq_group_metadata_list): | |
| seq_ids = list(seq_group_metadata.seq_data.keys()) | |
| sampling_params = seq_group_metadata.sampling_params | |
| seq_groups.append((seq_ids, sampling_params)) | |
| if seq_group_metadata.is_prompt: | |
| assert len(seq_ids) == 1 | |
| assert subquery_lens is not None | |
| subquery_len = subquery_lens[i] | |
| if sampling_params.prompt_logprobs is not None: | |
| # NOTE: prompt token positions do not need sample, skip | |
| categorized_sample_indices_start_idx += subquery_len - 1 | |
| categorized_sample_indices[ | |
| sampling_params.sampling_type].append( | |
| (categorized_sample_indices_start_idx, | |
| categorized_sampled_token_indices_start_idx)) | |
| categorized_sample_indices_start_idx += 1 | |
| categorized_sampled_token_indices_start_idx += 1 | |
| if sampling_params.prompt_logprobs is not None: | |
| selected_token_indices.extend( | |
| range(selected_token_start_idx, | |
| selected_token_start_idx + subquery_len - 1)) | |
| selected_token_indices.append(selected_token_start_idx + | |
| subquery_len - 1) | |
| selected_token_start_idx += subquery_len | |
| if sampling_params.seed is not None: | |
| seq_group_metadata.state.generator = torch.Generator( | |
| device=self.device).manual_seed(sampling_params.seed) | |
| else: | |
| num_seqs = len(seq_ids) | |
| selected_token_indices.extend( | |
| range(selected_token_start_idx, | |
| selected_token_start_idx + num_seqs)) | |
| selected_token_start_idx += num_seqs | |
| categorized_sample_indices[ | |
| sampling_params.sampling_type].extend( | |
| list( | |
| zip( | |
| range( | |
| categorized_sample_indices_start_idx, | |
| categorized_sample_indices_start_idx + | |
| num_seqs), | |
| range( | |
| categorized_sampled_token_indices_start_idx, | |
| categorized_sampled_token_indices_start_idx | |
| + num_seqs)))) | |
| categorized_sample_indices_start_idx += num_seqs | |
| categorized_sampled_token_indices_start_idx += num_seqs | |
| if sampling_params.seed is not None: | |
| generators.append(seq_group_metadata.state.generator) | |
| selected_token_indices = async_tensor_h2d(selected_token_indices, | |
| dtype=torch.long, | |
| target_device=self.device, | |
| pin_memory=self.pin_memory) | |
| categorized_sample_indices = { | |
| t: maybe_expand_dim( | |
| async_tensor_h2d(seq_ids, | |
| dtype=torch.int, | |
| target_device=self.device, | |
| pin_memory=self.pin_memory), 2, 2) | |
| for t, seq_ids in categorized_sample_indices.items() | |
| } | |
| seq_data: Dict[int, SequenceData] = {} | |
| for seq_group_metadata in seq_group_metadata_list: | |
| seq_data.update(seq_group_metadata.seq_data) | |
| sampling_metadata = SamplingMetadata( | |
| seq_groups=seq_groups, | |
| seq_data=seq_data, | |
| prompt_lens=prompt_lens, | |
| selected_token_indices=selected_token_indices, | |
| categorized_sample_indices=categorized_sample_indices, | |
| generators=generators, | |
| ) | |
| return sampling_metadata | |
| def prepare_input_tensors( | |
| self, | |
| seq_group_metadata_list: List[SequenceGroupMetadata], | |
| ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, SamplingMetadata, | |
| Set[LoRARequest], LoRAMapping, torch.Tensor]: | |
| if self.is_driver_worker: | |
| prefill_reqs = [] | |
| decode_reqs = [] | |
| for seq_group_meta in seq_group_metadata_list: | |
| if seq_group_meta.is_prompt: | |
| prefill_reqs.append(seq_group_meta) | |
| else: | |
| decode_reqs.append(seq_group_meta) | |
| # Prepare input tensors. | |
| ( | |
| input_tokens, | |
| input_positions, | |
| prefill_attn_metadata, | |
| prompt_lens, | |
| subquery_lens, | |
| lora_index_mapping, | |
| lora_prompt_mapping, | |
| lora_requests, | |
| multi_modal_input, | |
| slot_mapping, | |
| ) = self._prepare_prompt(prefill_reqs) | |
| ( | |
| decode_input_tokens, | |
| decode_input_positions, | |
| decode_attn_metadata, | |
| decode_lora_index_mapping, | |
| decode_lora_prompt_mapping, | |
| decode_lora_requests, | |
| decode_slot_mapping, | |
| ) = self._prepare_decode(decode_reqs) | |
| sampling_metadata = self._prepare_sample(seq_group_metadata_list, | |
| prompt_lens, | |
| subquery_lens) | |
| if not self.scheduler_config.chunked_prefill_enabled: | |
| assert (len(prefill_reqs) and len(decode_reqs)) == 0 | |
| num_prefills = len(prompt_lens) | |
| num_prefill_tokens = len(input_tokens) | |
| num_decode_tokens = len(decode_input_tokens) | |
| # Coalesce tensors. Note that attn_metadata is currently not | |
| # coalesced for simplicity. | |
| input_tokens.extend(decode_input_tokens) | |
| input_positions.extend(decode_input_positions) | |
| slot_mapping.extend(decode_slot_mapping) | |
| lora_index_mapping.extend(decode_lora_index_mapping) | |
| lora_prompt_mapping.extend(decode_lora_prompt_mapping) | |
| lora_requests.update(decode_lora_requests) | |
| input_tokens = torch.tensor(input_tokens, | |
| dtype=torch.long, | |
| device=self.device) | |
| input_positions = torch.tensor(input_positions, | |
| dtype=torch.long, | |
| device=self.device) | |
| slot_mapping = torch.tensor(slot_mapping, | |
| dtype=torch.long, | |
| device=self.device) | |
| if self.lora_config: | |
| lora_mapping = LoRAMapping( | |
| lora_index_mapping, | |
| lora_prompt_mapping, | |
| ) | |
| else: | |
| lora_mapping = None | |
| # Broadcast the metadata. | |
| # If batch contains both prefill and decode, it sends 2 broadcasts. | |
| # If it only contains 1 type, it triggers a single broadcast. | |
| if (prefill_attn_metadata is not None | |
| and decode_attn_metadata is not None): | |
| batch_type = BatchType.MIXED | |
| elif prefill_attn_metadata is not None: | |
| batch_type = BatchType.PREFILL | |
| else: | |
| batch_type = BatchType.DECODE | |
| metadata_dict = { | |
| "input_tokens": input_tokens, | |
| "input_positions": input_positions, | |
| "selected_token_indices": | |
| sampling_metadata.selected_token_indices, | |
| "lora_requests": lora_requests, | |
| "lora_mapping": lora_mapping, | |
| "multi_modal_input": multi_modal_input, | |
| "num_prefill_tokens": num_prefill_tokens, | |
| "num_decode_tokens": num_decode_tokens, | |
| "slot_mapping": slot_mapping, | |
| "num_prefills": num_prefills, | |
| "batch_type": batch_type, | |
| } | |
| if prefill_attn_metadata is not None: | |
| metadata_dict.update(prefill_attn_metadata.asdict_zerocopy()) | |
| else: | |
| assert decode_attn_metadata is not None | |
| metadata_dict.update(decode_attn_metadata.asdict_zerocopy()) | |
| broadcast_tensor_dict(metadata_dict, src=0) | |
| # Broadcast decode attn metadata for mixed batch type. | |
| # The additional broadcast costs 300us overhead on 4 A10 GPUs. | |
| # We can potentially reduce the overhead by coelescing tensors. | |
| if batch_type == BatchType.MIXED: | |
| assert decode_attn_metadata is not None | |
| metadata_dict = decode_attn_metadata.asdict_zerocopy() | |
| broadcast_tensor_dict(metadata_dict, src=0) | |
| else: | |
| metadata_dict = broadcast_tensor_dict(src=0) | |
| input_tokens = metadata_dict.pop("input_tokens") | |
| input_positions = metadata_dict.pop("input_positions") | |
| slot_mapping = metadata_dict.pop("slot_mapping") | |
| num_prefills = metadata_dict.pop("num_prefills") | |
| selected_token_indices = metadata_dict.pop( | |
| "selected_token_indices") | |
| lora_mapping = metadata_dict.pop("lora_mapping") | |
| lora_requests = metadata_dict.pop("lora_requests") | |
| multi_modal_input = metadata_dict.pop("multi_modal_input") | |
| num_prefill_tokens = metadata_dict.pop("num_prefill_tokens") | |
| num_decode_tokens = metadata_dict.pop("num_decode_tokens") | |
| batch_type = metadata_dict.pop("batch_type") | |
| # Create an attention metadata. | |
| prefill_attn_metadata = None | |
| decode_attn_metadata = None | |
| if batch_type == BatchType.PREFILL or batch_type == BatchType.MIXED: | |
| prefill_attn_metadata = self.attn_backend.make_metadata( | |
| **metadata_dict) | |
| else: | |
| decode_attn_metadata = self.attn_backend.make_metadata( | |
| **metadata_dict) | |
| sampling_metadata = SamplingMetadata( | |
| seq_groups=None, | |
| seq_data=None, | |
| prompt_lens=None, | |
| selected_token_indices=selected_token_indices, | |
| categorized_sample_indices=None, | |
| generators=None, | |
| perform_sampling=False, | |
| ) | |
| # if it is a mixed batch, decode attn_metadata is broadcasted | |
| # separately. | |
| if batch_type == BatchType.MIXED: | |
| metadata_dict = broadcast_tensor_dict(src=0) | |
| decode_attn_metadata = self.attn_backend.make_metadata( | |
| **metadata_dict) | |
| attn_metadata = AttentionMetadata( | |
| num_prefills=num_prefills, | |
| slot_mapping=slot_mapping, | |
| num_prefill_tokens=num_prefill_tokens, | |
| num_decode_tokens=num_decode_tokens, | |
| prefill_metadata=prefill_attn_metadata, | |
| decode_metadata=decode_attn_metadata, | |
| kv_cache_dtype=self.kv_cache_dtype, | |
| ) | |
| return (input_tokens, input_positions, attn_metadata, | |
| sampling_metadata, lora_requests, lora_mapping, | |
| multi_modal_input) | |
| def execute_model( | |
| self, | |
| seq_group_metadata_list: List[SequenceGroupMetadata], | |
| kv_caches: List[torch.Tensor], | |
| ) -> Optional[SamplerOutput]: | |
| (input_tokens, input_positions, attn_metadata, sampling_metadata, | |
| lora_requests, lora_mapping, multi_modal_input | |
| ) = self.prepare_input_tensors(seq_group_metadata_list) | |
| if self.lora_config: | |
| self.set_active_loras(lora_requests, lora_mapping) | |
| # Currently cuda graph is only supported by the decode phase. | |
| prefill_meta = attn_metadata.prefill_metadata | |
| decode_meta = attn_metadata.decode_metadata | |
| if prefill_meta is None and decode_meta.use_cuda_graph: | |
| graph_batch_size = input_tokens.shape[0] | |
| model_executable = self.graph_runners[graph_batch_size] | |
| else: | |
| model_executable = self.model | |
| execute_model_kwargs = { | |
| "input_ids": input_tokens, | |
| "positions": input_positions, | |
| "kv_caches": kv_caches, | |
| "attn_metadata": attn_metadata, | |
| } | |
| if self.vision_language_config: | |
| execute_model_kwargs.update({"image_input": multi_modal_input}) | |
| hidden_states = model_executable(**execute_model_kwargs) | |
| # Compute the logits. | |
| logits = self.model.compute_logits(hidden_states, sampling_metadata) | |
| # Only perform sampling in the driver worker. | |
| if not sampling_metadata.perform_sampling: | |
| return None | |
| # Sample the next token. | |
| output = self.model.sample( | |
| logits=logits, | |
| sampling_metadata=sampling_metadata, | |
| ) | |
| return output | |
| def profile_run(self) -> None: | |
| # Enable top-k sampling to reflect the accurate memory usage. | |
| sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1) | |
| max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens | |
| max_num_seqs = self.scheduler_config.max_num_seqs | |
| # This represents the maximum number of different requests | |
| # that will have unique loras, an therefore the max amount of memory | |
| # consumption create dummy lora request copies from the lora request | |
| # passed in, which contains a lora from the lora warmup path. | |
| dummy_lora_requests = [] | |
| dummy_lora_requests_per_seq = [] | |
| if self.lora_config: | |
| for idx in range(self.lora_config.max_loras): | |
| lora_id = idx + 1 | |
| dummy_lora_request = LoRARequest( | |
| lora_name=f"warmup_{lora_id}", | |
| lora_int_id=lora_id, | |
| lora_local_path="/not/a/real/path", | |
| ) | |
| self.lora_manager.add_dummy_lora(dummy_lora_request, | |
| rank=LORA_WARMUP_RANK) | |
| dummy_lora_requests.append(dummy_lora_request) | |
| dummy_lora_requests_per_seq = [ | |
| dummy_lora_requests[idx % len(dummy_lora_requests)] | |
| for idx in range(max_num_seqs) | |
| ] | |
| # Profile memory usage with max_num_sequences sequences and the total | |
| # number of tokens equal to max_num_batched_tokens. | |
| seqs: List[SequenceGroupMetadata] = [] | |
| # Additional GPU memory may be needed for vision encoding, which needs | |
| # to be accounted for when calculating the GPU blocks for | |
| # vLLM blocker manager. | |
| # To exercise the worst scenario for GPU memory consumption, | |
| # the number of seqs (batch_size) is chosen to maximize the number | |
| # of images processed. | |
| if self.vision_language_config: | |
| max_num_seqs = min( | |
| max_num_seqs, | |
| int(max_num_batched_tokens / | |
| self.vision_language_config.image_feature_size)) | |
| for group_id in range(max_num_seqs): | |
| seq_len = (max_num_batched_tokens // max_num_seqs + | |
| (group_id < max_num_batched_tokens % max_num_seqs)) | |
| seq_data, fake_multi_modal_input = _prepare_fake_inputs( | |
| seq_len, self.vision_language_config) | |
| seq = SequenceGroupMetadata( | |
| request_id=str(group_id), | |
| is_prompt=True, | |
| seq_data={group_id: seq_data}, | |
| sampling_params=sampling_params, | |
| block_tables=None, | |
| lora_request=dummy_lora_requests_per_seq[group_id] | |
| if dummy_lora_requests_per_seq else None, | |
| multi_modal_data=fake_multi_modal_input, | |
| ) | |
| seqs.append(seq) | |
| # Run the model with the dummy inputs. | |
| num_layers = self.model_config.get_num_layers(self.parallel_config) | |
| kv_caches = [None] * num_layers | |
| self.execute_model(seqs, kv_caches) | |
| torch.cuda.synchronize() | |
| return | |
| def remove_all_loras(self) -> bool: | |
| if not self.lora_manager: | |
| raise RuntimeError("LoRA is not enabled.") | |
| return self.lora_manager.remove_all_loras() | |
| def set_active_loras(self, lora_requests: Set[LoRARequest], | |
| lora_mapping: LoRAMapping) -> None: | |
| if not self.lora_manager: | |
| raise RuntimeError("LoRA is not enabled.") | |
| self.lora_manager.set_active_loras(lora_requests, lora_mapping) | |
| def add_lora(self, lora_request: LoRARequest) -> bool: | |
| if not self.lora_manager: | |
| raise RuntimeError("LoRA is not enabled.") | |
| return self.lora_manager.add_lora(lora_request) | |
| def remove_lora(self, lora_id: int) -> bool: | |
| if not self.lora_manager: | |
| raise RuntimeError("LoRA is not enabled.") | |
| return self.lora_manager.remove_lora(lora_id) | |
| def list_loras(self) -> Set[int]: | |
| if not self.lora_manager: | |
| raise RuntimeError("LoRA is not enabled.") | |
| return self.lora_manager.list_loras() | |
| def capture_model(self, kv_caches: List[torch.Tensor]) -> None: | |
| """Cuda graph capture a model. | |
| Note that CUDA graph's performance gain is negligible if number | |
| of batched tokens are larger than 200. And since CUDA graph | |
| requires fixed sized tensors, supporting large/variable batch | |
| size requires high GPU memory overhead. Thus, vLLM only captures | |
| decoding requests. Mixed batch (chunked prefill + decoding) or | |
| prefill requests are not captured. | |
| Since it is used for decoding-only, it assumes there's only 1 token | |
| per sequence in the batch. | |
| """ | |
| # NOTE(woosuk): This is a hack to ensure that the NCCL backend is never | |
| # deleted before the CUDA graphs. | |
| self.pynccl_backend = pynccl_utils.get_nccl_backend() | |
| assert not self.model_config.enforce_eager | |
| logger.info("Capturing the model for CUDA graphs. This may lead to " | |
| "unexpected consequences if the model is not static. To " | |
| "run the model in eager mode, set 'enforce_eager=True' or " | |
| "use '--enforce-eager' in the CLI.") | |
| logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. " | |
| "If you are running out of memory, consider decreasing " | |
| "`gpu_memory_utilization` or enforcing eager mode. " | |
| "You can also reduce the `max_num_seqs` as needed " | |
| "to decrease memory usage.") | |
| start_time = time.perf_counter() | |
| # Prepare dummy inputs. These will be reused for all batch sizes. | |
| max_batch_size = max(_BATCH_SIZES_TO_CAPTURE) | |
| input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda() | |
| input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda() | |
| slot_mapping = torch.empty(max_batch_size, dtype=torch.long).cuda() | |
| slot_mapping.fill_(_PAD_SLOT_ID) | |
| context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda() | |
| block_tables = torch.from_numpy(self.graph_block_tables).cuda() | |
| graph_batch_size = _get_graph_batch_size( | |
| self.scheduler_config.max_num_seqs) | |
| batch_size_capture_list = [ | |
| bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size | |
| ] | |
| # NOTE(woosuk): There are 3 backends for all-reduce: custom all-reduce | |
| # kernel, pynccl, and PyTorch NCCL. When using CUDA graph, we use | |
| # either custom all-reduce kernel or pynccl. When not using CUDA | |
| # graph, we use either custom all-reduce kernel or PyTorch NCCL. | |
| # We always prioritize using custom all-reduce kernel but fall back | |
| # to PyTorch or pynccl if it is disabled or not supported. | |
| with custom_all_reduce.capture(): | |
| # NOTE: Capturing the largest batch size first may help reduce the | |
| # memory usage of CUDA graph. | |
| for batch_size in reversed(batch_size_capture_list): | |
| # Create dummy attn_metadata. | |
| decode_metadata = self.attn_backend.make_metadata( | |
| is_prompt=False, | |
| prompt_lens=None, | |
| prompt_lens_tensor=None, | |
| max_subquery_len=None, | |
| max_context_len=self.max_context_len_to_capture, | |
| max_prompt_len=None, | |
| subquery_start_loc=None, | |
| seq_start_loc=None, | |
| context_lens=context_lens[:batch_size], | |
| block_tables=block_tables[:batch_size], | |
| use_cuda_graph=True, | |
| ) | |
| attn_metadata = AttentionMetadata( | |
| num_prefills=0, | |
| num_prefill_tokens=0, | |
| num_decode_tokens=batch_size, | |
| slot_mapping=slot_mapping[:batch_size], | |
| prefill_metadata=None, | |
| decode_metadata=decode_metadata, | |
| kv_cache_dtype=self.kv_cache_dtype, | |
| ) | |
| if self.lora_config: | |
| lora_mapping = LoRAMapping( | |
| [0] * batch_size, | |
| [0] * batch_size, | |
| ) | |
| self.set_active_loras(set(), lora_mapping) | |
| graph_runner = CUDAGraphRunner(self.model) | |
| graph_runner.capture( | |
| input_tokens[:batch_size], | |
| input_positions[:batch_size], | |
| kv_caches, | |
| attn_metadata, | |
| memory_pool=self.graph_memory_pool, | |
| ) | |
| self.graph_memory_pool = graph_runner.graph.pool() | |
| self.graph_runners[batch_size] = graph_runner | |
| end_time = time.perf_counter() | |
| elapsed_time = end_time - start_time | |
| # This usually takes < 10 seconds. | |
| logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.") | |
| def __del__(self) -> None: | |
| # Delete the CUDA graphs before deleting the pynccl communicator. | |
| # NOTE(woosuk): This is necessary because otherwise deadlocks can | |
| # happen. | |
| # FIXME(woosuk): This is a bit hacky. Find a more robust solution. | |
| # TODO(youkaichao): when we get enough user feedback that pynccl is | |
| # more stable than cupy, we can remove this, e.g. in v0.4.1. | |
| self.graph_runners.clear() | |
| self.pynccl_backend = None | |
| def vocab_size(self) -> int: | |
| return self.model_config.get_vocab_size() | |
| class CUDAGraphRunner: | |
| def __init__(self, model: nn.Module): | |
| self.model = model | |
| self.input_buffers: Dict[str, torch.Tensor] = {} | |
| self.output_buffers: Dict[str, torch.Tensor] = {} | |
| self._graph: Optional[torch.cuda.CUDAGraph] = None | |
| def graph(self): | |
| assert self._graph is not None | |
| return self._graph | |
| def capture( | |
| self, | |
| input_ids: torch.Tensor, | |
| positions: torch.Tensor, | |
| kv_caches: List[torch.Tensor], | |
| attn_metadata: AttentionMetadata, | |
| memory_pool, | |
| **kwargs, | |
| ) -> None: | |
| assert self._graph is None | |
| # Run the model once without capturing the graph. | |
| # This is to make sure that the captured graph does not include the | |
| # kernel launches for initial benchmarking (e.g., Triton autotune). | |
| with _maybe_pynccl(): | |
| self.model( | |
| input_ids, | |
| positions, | |
| kv_caches, | |
| attn_metadata, | |
| **kwargs, | |
| ) | |
| torch.cuda.synchronize() | |
| # Capture the graph. | |
| # NOTE(woosuk): Python 3.8 does not support multi-line with statements. | |
| # https://stackoverflow.com/questions/31039022/python-multi-line-with-statement | |
| self._graph = torch.cuda.CUDAGraph() | |
| with torch.cuda.graph(self._graph, pool=memory_pool): # noqa: SIM117 | |
| with _maybe_pynccl(): | |
| hidden_states = self.model( | |
| input_ids, | |
| positions, | |
| kv_caches, | |
| attn_metadata, | |
| **kwargs, | |
| ) | |
| torch.cuda.synchronize() | |
| # Save the input and output buffers. | |
| self.input_buffers = { | |
| "input_ids": input_ids, | |
| "positions": positions, | |
| "kv_caches": kv_caches, | |
| "slot_mapping": attn_metadata.slot_mapping, | |
| "context_lens": attn_metadata.decode_metadata.context_lens, | |
| "block_tables": attn_metadata.decode_metadata.block_tables, | |
| } | |
| self.output_buffers = {"hidden_states": hidden_states} | |
| return | |
| def forward( | |
| self, | |
| input_ids: torch.Tensor, | |
| positions: torch.Tensor, | |
| kv_caches: List[torch.Tensor], | |
| attn_metadata: AttentionMetadata, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| # KV caches are fixed tensors, so we don't need to copy them. | |
| del kv_caches | |
| # Copy the input tensors to the input buffers. | |
| self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True) | |
| self.input_buffers["positions"].copy_(positions, non_blocking=True) | |
| self.input_buffers["slot_mapping"].copy_(attn_metadata.slot_mapping, | |
| non_blocking=True) | |
| self.input_buffers["context_lens"].copy_( | |
| attn_metadata.decode_metadata.context_lens, non_blocking=True) | |
| self.input_buffers["block_tables"].copy_( | |
| attn_metadata.decode_metadata.block_tables, non_blocking=True) | |
| # Run the graph. | |
| self.graph.replay() | |
| # Return the output tensor. | |
| return self.output_buffers["hidden_states"] | |
| def __call__(self, *args, **kwargs): | |
| return self.forward(*args, **kwargs) | |
| def _maybe_pynccl(): | |
| if pynccl_utils.is_initialized( | |
| ) and not custom_all_reduce.is_initialized(): | |
| with with_pynccl_for_all_reduce(): | |
| yield | |
| else: | |
| yield | |
| def _get_graph_batch_size(batch_size: int) -> int: | |
| """Returns the padded batch size given actual batch size. | |
| Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT, | |
| 2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT... | |
| """ | |
| if batch_size <= 2: | |
| return batch_size | |
| elif batch_size <= 4: | |
| return 4 | |
| else: | |
| return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) // | |
| _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT) | |
| def _prepare_fake_inputs( | |
| seq_len: int, vision_language_config: Optional[VisionLanguageConfig]): | |
| """Prepare fake inputs for profile run.""" | |
| if vision_language_config: | |
| prompt_tokens = [ | |
| vision_language_config.image_token_id | |
| ] * vision_language_config.image_feature_size + [0] * ( | |
| seq_len - vision_language_config.image_feature_size) | |
| fake_image_input = MultiModalData( | |
| type=MultiModalData.Type.IMAGE, | |
| data=torch.zeros(vision_language_config.image_input_shape, | |
| dtype=torch.float16)) | |
| else: | |
| prompt_tokens = [0] * seq_len | |
| fake_image_input = None | |
| return SequenceData(prompt_tokens), fake_image_input |