Spaces:
Sleeping
Sleeping
cool stuff
Browse files- .gitignore +1 -0
- CLAUDE.md +153 -50
- app.py +693 -73
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.pyc
|
CLAUDE.md
CHANGED
|
@@ -4,9 +4,11 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
|
| 4 |
|
| 5 |
## Project Overview
|
| 6 |
|
| 7 |
-
This is a Hugging Face Space that serves as
|
| 8 |
|
| 9 |
-
**Core Concept**: Each real-world object has ONE canonical Piclet! Players
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## Architecture
|
| 12 |
|
|
@@ -66,37 +68,85 @@ Examples:
|
|
| 66 |
|
| 67 |
## API Endpoints
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
- Returns: `status` (new/existing/variation), `piclet` data
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
- Returns: Created variation
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
- Returns: Updated scan count
|
| 86 |
|
| 87 |
-
###
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
- Returns: Recent discoveries with metadata
|
| 92 |
|
| 93 |
-
|
| 94 |
-
- Input: `limit` (default 10)
|
| 95 |
-
- Returns: Ranked users by rarity score
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
- Returns: User's discoveries and statistics
|
| 100 |
|
| 101 |
## Rarity System
|
| 102 |
|
|
@@ -128,26 +178,49 @@ Rarity scoring for leaderboard:
|
|
| 128 |
|
| 129 |
## Integration with Frontend
|
| 130 |
|
| 131 |
-
The frontend (`../piclets/`)
|
| 132 |
|
| 133 |
```javascript
|
| 134 |
-
//
|
| 135 |
const client = await window.gradioClient.Client.connect("Fraser/piclets-server");
|
| 136 |
|
| 137 |
-
//
|
| 138 |
-
const
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
});
|
|
|
|
| 142 |
|
| 143 |
-
//
|
| 144 |
-
const
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
| 148 |
});
|
| 149 |
```
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
## Development
|
| 152 |
|
| 153 |
### Local Testing
|
|
@@ -164,12 +237,35 @@ git add -A && git commit -m "Update" && git push
|
|
| 164 |
```
|
| 165 |
|
| 166 |
### Environment Variables
|
| 167 |
-
- `HF_TOKEN`: **Required** - HuggingFace write token (set in Space Secrets)
|
| 168 |
-
- `ADMIN_PASSWORD`:
|
| 169 |
- `DATASET_REPO`: Target dataset (default: "Fraser/piclets")
|
| 170 |
|
|
|
|
|
|
|
| 171 |
## Key Implementation Details
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
### Variation Matching
|
| 174 |
- Uses set intersection to find attribute overlap
|
| 175 |
- 50% match threshold for variations
|
|
@@ -181,23 +277,30 @@ git add -A && git commit -m "Update" && git push
|
|
| 181 |
- Temporary files for uploads
|
| 182 |
|
| 183 |
### Error Handling
|
|
|
|
| 184 |
- Graceful fallbacks for missing data
|
| 185 |
- Default user profiles for new users
|
| 186 |
-
- Try-catch blocks around all
|
|
|
|
| 187 |
|
| 188 |
## Future Enhancements
|
| 189 |
|
| 190 |
-
1. **
|
| 191 |
-
2. **
|
| 192 |
-
3. **
|
| 193 |
-
4. **
|
| 194 |
-
5. **
|
| 195 |
-
6. **
|
|
|
|
|
|
|
| 196 |
|
| 197 |
## Security Considerations
|
| 198 |
|
| 199 |
-
- All
|
| 200 |
-
-
|
| 201 |
-
-
|
| 202 |
-
-
|
| 203 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
## Project Overview
|
| 6 |
|
| 7 |
+
This is a Hugging Face Space that serves as the **complete backend** for the Piclets Discovery game. It orchestrates AI services, handles Piclet generation, and manages persistent storage.
|
| 8 |
|
| 9 |
+
**Core Concept**: Each real-world object has ONE canonical Piclet! Players scan objects with photos, and the server generates Pokemon-style creatures using AI, tracking canonical discoveries and variations (e.g., "velvet pillow" is a variation of the canonical "pillow").
|
| 10 |
+
|
| 11 |
+
**Architecture Philosophy**: The server handles ALL AI orchestration securely. The frontend is a pure UI that makes a single API call. This prevents client-side manipulation and ensures fair play.
|
| 12 |
|
| 13 |
## Architecture
|
| 14 |
|
|
|
|
| 68 |
|
| 69 |
## API Endpoints
|
| 70 |
|
| 71 |
+
The frontend only needs these **5 public endpoints**:
|
| 72 |
+
|
| 73 |
+
### 1. **generate_piclet** (Scanner)
|
| 74 |
+
Complete Piclet generation workflow - the main endpoint.
|
| 75 |
+
|
| 76 |
+
- **Input**:
|
| 77 |
+
- `image`: User's photo (File)
|
| 78 |
+
- `hf_token`: User's HuggingFace OAuth token (string)
|
| 79 |
+
- **Process**:
|
| 80 |
+
1. Verifies `hf_token` โ gets user info
|
| 81 |
+
2. Uses token to connect to **JoyCaption** โ generates detailed image description
|
| 82 |
+
3. Uses token to call **GPT-OSS-120B** โ generates Pokemon concept (object, variation, stats, description)
|
| 83 |
+
4. Parses concept to extract structured data
|
| 84 |
+
5. Uses token to call **Flux-Schnell** โ generates Piclet image
|
| 85 |
+
6. Checks dataset for canonical/variation match
|
| 86 |
+
7. Saves to dataset with user attribution
|
| 87 |
+
8. Updates user profile (discoveries, rarity score)
|
| 88 |
+
- **Returns**:
|
| 89 |
+
```json
|
| 90 |
+
{
|
| 91 |
+
"success": true,
|
| 92 |
+
"piclet": {/* complete Piclet data */},
|
| 93 |
+
"discoveryStatus": "new" | "variation" | "existing",
|
| 94 |
+
"canonicalId": "pillow_canonical",
|
| 95 |
+
"message": "Congratulations! You discovered the first pillow Piclet!"
|
| 96 |
+
}
|
| 97 |
+
```
|
| 98 |
+
- **Security**: Uses user's token to call AI services, consuming THEIR GPU quota (not the server's)
|
| 99 |
+
|
| 100 |
+
### 2. **get_user_piclets** (User Collection)
|
| 101 |
+
Get user's discovered Piclets and stats.
|
| 102 |
+
|
| 103 |
+
- **Input**: `hf_token` (string)
|
| 104 |
+
- **Returns**:
|
| 105 |
+
```json
|
| 106 |
+
{
|
| 107 |
+
"success": true,
|
| 108 |
+
"piclets": [{/* list of discoveries */}],
|
| 109 |
+
"stats": {
|
| 110 |
+
"username": "...",
|
| 111 |
+
"totalFinds": 42,
|
| 112 |
+
"uniqueFinds": 15,
|
| 113 |
+
"rarityScore": 1250
|
| 114 |
+
}
|
| 115 |
+
}
|
| 116 |
+
```
|
| 117 |
|
| 118 |
+
### 3. **get_object_details** (Object Data)
|
| 119 |
+
Get complete object information (canonical + all variations).
|
|
|
|
| 120 |
|
| 121 |
+
- **Input**: `object_name` (string, e.g., "pillow", "macbook")
|
| 122 |
+
- **Returns**:
|
| 123 |
+
```json
|
| 124 |
+
{
|
| 125 |
+
"success": true,
|
| 126 |
+
"objectName": "pillow",
|
| 127 |
+
"canonical": {/* canonical data */},
|
| 128 |
+
"variations": [{/* variation 1 */}, {/* variation 2 */}],
|
| 129 |
+
"totalScans": 157,
|
| 130 |
+
"variationCount": 8
|
| 131 |
+
}
|
| 132 |
+
```
|
| 133 |
|
| 134 |
+
### 4. **get_recent_activity** (Activity Feed)
|
| 135 |
+
Recent discoveries across all users.
|
|
|
|
| 136 |
|
| 137 |
+
- **Input**: `limit` (int, default 20)
|
| 138 |
+
- **Returns**: List of recent discoveries with timestamps
|
|
|
|
| 139 |
|
| 140 |
+
### 5. **get_leaderboard** (Top Users)
|
| 141 |
+
Top discoverers by rarity score.
|
| 142 |
|
| 143 |
+
- **Input**: `limit` (int, default 10)
|
| 144 |
+
- **Returns**: Ranked users with stats
|
|
|
|
| 145 |
|
| 146 |
+
---
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
**Internal Functions** (not exposed to frontend):
|
| 149 |
+
- `search_piclet()`, `create_canonical()`, `create_variation()`, `increment_scan_count()` - Used internally by `generate_piclet()`
|
|
|
|
| 150 |
|
| 151 |
## Rarity System
|
| 152 |
|
|
|
|
| 178 |
|
| 179 |
## Integration with Frontend
|
| 180 |
|
| 181 |
+
The frontend (`../piclets/`) uses these **5 simple API calls**:
|
| 182 |
|
| 183 |
```javascript
|
| 184 |
+
// Connect to server
|
| 185 |
const client = await window.gradioClient.Client.connect("Fraser/piclets-server");
|
| 186 |
|
| 187 |
+
// 1. Scanner - Generate complete Piclet (ONE CALL - server does everything!)
|
| 188 |
+
const scanResult = await client.predict("/generate_piclet", {
|
| 189 |
+
image: imageFile,
|
| 190 |
+
hf_token: userToken
|
| 191 |
+
});
|
| 192 |
+
const { success, piclet, discoveryStatus, message } = scanResult.data[0];
|
| 193 |
+
|
| 194 |
+
// 2. User Collection - Get user's Piclets + stats
|
| 195 |
+
const myPiclets = await client.predict("/get_user_piclets", {
|
| 196 |
+
hf_token: userToken
|
| 197 |
+
});
|
| 198 |
+
const { piclets, stats } = myPiclets.data[0];
|
| 199 |
+
|
| 200 |
+
// 3. Object Details - Get object info (canonical + variations)
|
| 201 |
+
const objectInfo = await client.predict("/get_object_details", {
|
| 202 |
+
object_name: "pillow"
|
| 203 |
});
|
| 204 |
+
const { canonical, variations, totalScans } = objectInfo.data[0];
|
| 205 |
|
| 206 |
+
// 4. Activity Feed - Get recent discoveries
|
| 207 |
+
const activity = await client.predict("/get_recent_activity", {
|
| 208 |
+
limit: 20
|
| 209 |
+
});
|
| 210 |
+
|
| 211 |
+
// 5. Leaderboard - Get top users
|
| 212 |
+
const leaders = await client.predict("/get_leaderboard", {
|
| 213 |
+
limit: 10
|
| 214 |
});
|
| 215 |
```
|
| 216 |
|
| 217 |
+
**Why This Design?**
|
| 218 |
+
- **Clean API**: Only 5 endpoints, each with a clear purpose
|
| 219 |
+
- **Security**: All AI orchestration happens server-side (can't be manipulated)
|
| 220 |
+
- **Simplicity**: Frontend is pure UI, no complex orchestration logic
|
| 221 |
+
- **Fairness**: Uses user's GPU quota, not server's
|
| 222 |
+
- **Reliability**: Server handles retries and error recovery
|
| 223 |
+
|
| 224 |
## Development
|
| 225 |
|
| 226 |
### Local Testing
|
|
|
|
| 237 |
```
|
| 238 |
|
| 239 |
### Environment Variables
|
| 240 |
+
- `HF_TOKEN`: **Required** - HuggingFace write token for dataset operations (set in Space Secrets)
|
| 241 |
+
- `ADMIN_PASSWORD`: Optional - Password for web UI access (set in Space Secrets)
|
| 242 |
- `DATASET_REPO`: Target dataset (default: "Fraser/piclets")
|
| 243 |
|
| 244 |
+
Note: Users' `hf_token` (passed in API calls) is separate from server's `HF_TOKEN` (for dataset writes).
|
| 245 |
+
|
| 246 |
## Key Implementation Details
|
| 247 |
|
| 248 |
+
### AI Service Integration
|
| 249 |
+
The server uses `gradio_client` to call external AI services with the user's token:
|
| 250 |
+
|
| 251 |
+
- **JoyCaption** (`fancyfeast/joy-caption-alpha-two`): Detailed image captioning with brand/model recognition
|
| 252 |
+
- **GPT-OSS-120B** (`amd/gpt-oss-120b-chatbot`): Concept generation and parsing
|
| 253 |
+
- **Flux-Schnell** (`black-forest-labs/FLUX.1-schnell`): Anime-style Piclet image generation
|
| 254 |
+
|
| 255 |
+
Each service is called with the user's `hf_token`, consuming their GPU quota.
|
| 256 |
+
|
| 257 |
+
### Concept Parsing
|
| 258 |
+
GPT-OSS generates structured markdown with sections:
|
| 259 |
+
- Canonical Object (specific brand/model, not generic)
|
| 260 |
+
- Variation (distinctive attribute or "canonical")
|
| 261 |
+
- Object Rarity (determines tier)
|
| 262 |
+
- Monster Name, Type, Stats
|
| 263 |
+
- Physical Stats (height, weight)
|
| 264 |
+
- Personality, Description
|
| 265 |
+
- Monster Image Prompt
|
| 266 |
+
|
| 267 |
+
The parser uses regex to extract each section and clean the data.
|
| 268 |
+
|
| 269 |
### Variation Matching
|
| 270 |
- Uses set intersection to find attribute overlap
|
| 271 |
- 50% match threshold for variations
|
|
|
|
| 277 |
- Temporary files for uploads
|
| 278 |
|
| 279 |
### Error Handling
|
| 280 |
+
- Token verification before any operations
|
| 281 |
- Graceful fallbacks for missing data
|
| 282 |
- Default user profiles for new users
|
| 283 |
+
- Try-catch blocks around all operations
|
| 284 |
+
- Detailed logging for debugging
|
| 285 |
|
| 286 |
## Future Enhancements
|
| 287 |
|
| 288 |
+
1. **Background Removal**: Add server-side background removal (currently done on frontend)
|
| 289 |
+
2. **Activity Log**: Separate timeline file for better performance
|
| 290 |
+
3. **Image Storage**: Store Piclet images directly in dataset (currently stores URLs)
|
| 291 |
+
4. **Badges/Achievements**: Track discovery milestones
|
| 292 |
+
5. **Trading System**: Allow users to trade variations
|
| 293 |
+
6. **Seasonal Events**: Time-limited discoveries
|
| 294 |
+
7. **Rate Limiting**: Per-user rate limits to prevent abuse
|
| 295 |
+
8. **Caching**: Cache AI responses for identical images
|
| 296 |
|
| 297 |
## Security Considerations
|
| 298 |
|
| 299 |
+
- **Token Verification**: All operations verify HF OAuth tokens via `https://huggingface.co/oauth/userinfo`
|
| 300 |
+
- **User Attribution**: Discoveries tracked by stable HF `sub` (user ID), not username
|
| 301 |
+
- **Fair GPU Usage**: Users consume their own GPU quota, not server's
|
| 302 |
+
- **Public Data**: All discovery data is public by design (embracing open discovery)
|
| 303 |
+
- **No Client Manipulation**: AI orchestration happens server-side only
|
| 304 |
+
- **Input Validation**: File uploads and token formats validated
|
| 305 |
+
- **No Sensitive Data**: No passwords or private info stored
|
| 306 |
+
- **Future**: Rate limiting per user to prevent abuse
|
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
|
@@ -243,6 +244,279 @@ class PicletDiscoveryService:
|
|
| 243 |
print(f"Failed to update global stats: {e}")
|
| 244 |
return {}
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
# API Endpoints
|
| 247 |
|
| 248 |
def search_piclet(object_name: str, attributes: List[str]) -> dict:
|
|
@@ -502,6 +776,357 @@ def increment_scan_count(piclet_id: str, object_name: str) -> dict:
|
|
| 502 |
"error": str(e)
|
| 503 |
}
|
| 504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
def get_recent_activity(limit: int = 20) -> dict:
|
| 506 |
"""
|
| 507 |
Get recent discoveries across all users
|
|
@@ -617,23 +1242,6 @@ def get_leaderboard(limit: int = 10) -> dict:
|
|
| 617 |
"leaderboard": []
|
| 618 |
}
|
| 619 |
|
| 620 |
-
def get_user_profile(username: str) -> dict:
|
| 621 |
-
"""
|
| 622 |
-
Get user's discovery profile
|
| 623 |
-
"""
|
| 624 |
-
try:
|
| 625 |
-
user_data = PicletDiscoveryService.load_user_data(username)
|
| 626 |
-
return {
|
| 627 |
-
"success": True,
|
| 628 |
-
"profile": user_data
|
| 629 |
-
}
|
| 630 |
-
except Exception as e:
|
| 631 |
-
return {
|
| 632 |
-
"success": False,
|
| 633 |
-
"error": str(e),
|
| 634 |
-
"profile": None
|
| 635 |
-
}
|
| 636 |
-
|
| 637 |
# Create Gradio interface
|
| 638 |
with gr.Blocks(title="Piclets Discovery Server") as app:
|
| 639 |
gr.Markdown("""
|
|
@@ -642,58 +1250,63 @@ with gr.Blocks(title="Piclets Discovery Server") as app:
|
|
| 642 |
Backend service for the Piclets discovery game. Each real-world object has ONE canonical Piclet!
|
| 643 |
""")
|
| 644 |
|
| 645 |
-
with gr.Tab("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
with gr.Row():
|
| 647 |
with gr.Column():
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
with gr.Column():
|
| 652 |
-
|
| 653 |
|
| 654 |
-
|
| 655 |
-
fn=
|
| 656 |
-
inputs=[
|
| 657 |
-
outputs=
|
| 658 |
)
|
| 659 |
|
| 660 |
-
with gr.Tab("
|
|
|
|
|
|
|
|
|
|
|
|
|
| 661 |
with gr.Row():
|
| 662 |
with gr.Column():
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
canonical_user = gr.Textbox(label="Username")
|
| 666 |
-
canonical_btn = gr.Button("Create Canonical", variant="primary")
|
| 667 |
with gr.Column():
|
| 668 |
-
|
| 669 |
|
| 670 |
-
|
| 671 |
-
fn=
|
| 672 |
-
inputs=
|
| 673 |
-
outputs=
|
| 674 |
)
|
| 675 |
|
| 676 |
-
with gr.Tab("
|
|
|
|
|
|
|
|
|
|
|
|
|
| 677 |
with gr.Row():
|
| 678 |
with gr.Column():
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
var_attrs = gr.Textbox(label="Variation Attributes (comma-separated)")
|
| 682 |
-
var_data = gr.Textbox(label="Piclet Data (JSON)", lines=10)
|
| 683 |
-
var_user = gr.Textbox(label="Username")
|
| 684 |
-
var_btn = gr.Button("Create Variation", variant="primary")
|
| 685 |
with gr.Column():
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
fn=
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
inputs=[var_object, var_canonical, var_attrs, var_data, var_user],
|
| 693 |
-
outputs=var_result
|
| 694 |
)
|
| 695 |
|
| 696 |
-
with gr.Tab("Activity
|
| 697 |
activity_limit = gr.Slider(5, 50, value=20, label="Number of Activities")
|
| 698 |
activity_btn = gr.Button("Get Recent Activity")
|
| 699 |
activity_result = gr.JSON(label="Recent Discoveries")
|
|
@@ -715,32 +1328,39 @@ with gr.Blocks(title="Piclets Discovery Server") as app:
|
|
| 715 |
outputs=leader_result
|
| 716 |
)
|
| 717 |
|
| 718 |
-
with gr.Tab("User Profile"):
|
| 719 |
-
profile_user = gr.Textbox(label="Username")
|
| 720 |
-
profile_btn = gr.Button("Get Profile")
|
| 721 |
-
profile_result = gr.JSON(label="User Profile")
|
| 722 |
-
|
| 723 |
-
profile_btn.click(
|
| 724 |
-
fn=get_user_profile,
|
| 725 |
-
inputs=profile_user,
|
| 726 |
-
outputs=profile_result
|
| 727 |
-
)
|
| 728 |
-
|
| 729 |
# API Documentation
|
| 730 |
gr.Markdown("""
|
| 731 |
-
## API Endpoints
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
|
| 733 |
-
|
|
|
|
|
|
|
|
|
|
| 734 |
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
-
|
| 738 |
-
-
|
| 739 |
-
- **get_recent_activity**: Global discovery feed
|
| 740 |
-
- **get_leaderboard**: Top discoverers
|
| 741 |
-
- **get_user_profile**: Individual discovery stats
|
| 742 |
|
| 743 |
-
|
|
|
|
| 744 |
""")
|
| 745 |
|
| 746 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio_client import Client
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import re
|
|
|
|
| 244 |
print(f"Failed to update global stats: {e}")
|
| 245 |
return {}
|
| 246 |
|
| 247 |
+
class PicletGeneratorService:
|
| 248 |
+
"""
|
| 249 |
+
Orchestrates Piclet generation by calling external AI services
|
| 250 |
+
Uses user's hf_token to consume their GPU quota
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
+
# Space endpoints
|
| 254 |
+
JOY_CAPTION_SPACE = "fancyfeast/joy-caption-alpha-two"
|
| 255 |
+
GPT_OSS_SPACE = "amd/gpt-oss-120b-chatbot"
|
| 256 |
+
FLUX_SPACE = "black-forest-labs/FLUX.1-schnell"
|
| 257 |
+
|
| 258 |
+
@staticmethod
|
| 259 |
+
async def generate_enhanced_caption(image_path: str, hf_token: str) -> str:
|
| 260 |
+
"""Generate detailed image description using JoyCaption"""
|
| 261 |
+
try:
|
| 262 |
+
print(f"Connecting to JoyCaption space with user token...")
|
| 263 |
+
client = await Client.connect(
|
| 264 |
+
PicletGeneratorService.JOY_CAPTION_SPACE,
|
| 265 |
+
hf_token=hf_token
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
print(f"Generating caption for image...")
|
| 269 |
+
result = await client.predict(
|
| 270 |
+
image=image_path,
|
| 271 |
+
caption_type="Descriptive",
|
| 272 |
+
caption_length="medium-length",
|
| 273 |
+
extra_options=[],
|
| 274 |
+
name_input="",
|
| 275 |
+
custom_prompt="Describe this image in detail, identifying any recognizable objects, brands, logos, or specific models. Be specific about product names and types.",
|
| 276 |
+
api_name="/stream_chat"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# JoyCaption returns tuple: (image, caption_text)
|
| 280 |
+
caption = result[1] if isinstance(result, (list, tuple)) and len(result) > 1 else str(result)
|
| 281 |
+
print(f"Caption generated: {caption[:100]}...")
|
| 282 |
+
return caption
|
| 283 |
+
|
| 284 |
+
except Exception as e:
|
| 285 |
+
print(f"Failed to generate caption: {e}")
|
| 286 |
+
raise Exception(f"Caption generation failed: {str(e)}")
|
| 287 |
+
|
| 288 |
+
@staticmethod
|
| 289 |
+
async def generate_text_with_gpt(prompt: str, hf_token: str) -> str:
|
| 290 |
+
"""Generate text using GPT-OSS-120B"""
|
| 291 |
+
try:
|
| 292 |
+
print(f"Connecting to GPT-OSS space...")
|
| 293 |
+
client = await Client.connect(
|
| 294 |
+
PicletGeneratorService.GPT_OSS_SPACE,
|
| 295 |
+
hf_token=hf_token
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
print(f"Generating text...")
|
| 299 |
+
result = await client.predict(
|
| 300 |
+
message=prompt,
|
| 301 |
+
history=[],
|
| 302 |
+
system_prompt="You are a helpful assistant that creates Pokemon-style monster concepts based on real-world objects.",
|
| 303 |
+
temperature=0.7,
|
| 304 |
+
api_name="/chat"
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
# Extract response text (GPT-OSS formats with Analysis and Response)
|
| 308 |
+
response_text = result[0] if isinstance(result, (list, tuple)) else str(result)
|
| 309 |
+
|
| 310 |
+
# Try to extract Response section
|
| 311 |
+
response_match = re.search(r'\*\*๐ฌ Response:\*\*\s*\n\n([\s\S]*)', response_text)
|
| 312 |
+
if response_match:
|
| 313 |
+
return response_match.group(1).strip()
|
| 314 |
+
|
| 315 |
+
# Fallback: extract after "assistantfinal"
|
| 316 |
+
final_match = re.search(r'assistantfinal\s*([\s\S]*)', response_text)
|
| 317 |
+
if final_match:
|
| 318 |
+
return final_match.group(1).strip()
|
| 319 |
+
|
| 320 |
+
return response_text
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
print(f"Failed to generate text: {e}")
|
| 324 |
+
raise Exception(f"Text generation failed: {str(e)}")
|
| 325 |
+
|
| 326 |
+
@staticmethod
|
| 327 |
+
async def generate_piclet_concept(caption: str, hf_token: str) -> dict:
|
| 328 |
+
"""
|
| 329 |
+
Generate complete Piclet concept from image caption
|
| 330 |
+
Returns parsed concept with object name, variation, stats, etc.
|
| 331 |
+
"""
|
| 332 |
+
concept_prompt = f"""You are analyzing an image to create a Pokemon-style creature. Here's the image description:
|
| 333 |
+
|
| 334 |
+
"{caption}"
|
| 335 |
+
|
| 336 |
+
Your task:
|
| 337 |
+
1. Identify the PRIMARY PHYSICAL OBJECT with SPECIFICITY (e.g., "macbook" not "laptop", "eiffel tower" not "tower", "iphone" not "phone", "starbucks mug" not "mug")
|
| 338 |
+
2. Determine if there's a meaningful VARIATION (e.g., "silver", "pro", "night", "gaming", "vintage")
|
| 339 |
+
3. Assess rarity based on uniqueness
|
| 340 |
+
4. Create a complete Pokemon-style monster concept
|
| 341 |
+
|
| 342 |
+
Format your response EXACTLY as follows:
|
| 343 |
+
```md
|
| 344 |
+
# Canonical Object
|
| 345 |
+
{{Specific object name: "macbook", "eiffel tower", "iphone", "tesla", "le creuset mug", "nintendo switch"}}
|
| 346 |
+
{{NOT generic terms like: "laptop", "tower", "phone", "car", "mug", "console"}}
|
| 347 |
+
{{Include brand/model/landmark name when identifiable}}
|
| 348 |
+
|
| 349 |
+
# Variation
|
| 350 |
+
{{OPTIONAL: one distinctive attribute like "silver", "pro", "night", "gaming", OR use "canonical" if this is the standard/default version with no special variation}}
|
| 351 |
+
|
| 352 |
+
# Object Rarity
|
| 353 |
+
{{common, uncommon, rare, epic, or legendary based on object uniqueness}}
|
| 354 |
+
|
| 355 |
+
# Monster Name
|
| 356 |
+
{{Creative 8-11 letter name based on the SPECIFIC object, e.g., "Macbyte" for MacBook, "Towerfell" for Eiffel Tower}}
|
| 357 |
+
|
| 358 |
+
# Primary Type
|
| 359 |
+
{{beast, bug, aquatic, flora, mineral, space, machina, structure, culture, or cuisine}}
|
| 360 |
+
|
| 361 |
+
# Physical Stats
|
| 362 |
+
Height: {{e.g., "1.2m" or "3'5\\""}}
|
| 363 |
+
Weight: {{e.g., "15kg" or "33 lbs"}}
|
| 364 |
+
|
| 365 |
+
# Personality
|
| 366 |
+
{{1-2 sentences describing personality traits}}
|
| 367 |
+
|
| 368 |
+
# Monster Description
|
| 369 |
+
{{2-3 paragraphs describing how the SPECIFIC object's features translate into monster features. Reference the actual object by name. This is the creature's bio.}}
|
| 370 |
+
|
| 371 |
+
# Monster Image Prompt
|
| 372 |
+
{{Concise visual description for anime-style image generation focusing on colors, shapes, and key features inspired by the specific object}}
|
| 373 |
+
```
|
| 374 |
+
|
| 375 |
+
CRITICAL RULES:
|
| 376 |
+
- Canonical Object MUST be SPECIFIC: "macbook" not "laptop", "big ben" not "clock tower", "coca cola" not "soda"
|
| 377 |
+
- If you can identify a brand, model, or proper name from the description, USE IT
|
| 378 |
+
- Variation should be meaningful and distinctive (material, style, color, context, or model variant)
|
| 379 |
+
- Monster Description must describe the CREATURE with references to the specific object's features
|
| 380 |
+
- Primary Type must match the object category (machina for electronics, structure for buildings, etc.)"""
|
| 381 |
+
|
| 382 |
+
response_text = await PicletGeneratorService.generate_text_with_gpt(concept_prompt, hf_token)
|
| 383 |
+
|
| 384 |
+
# Parse the concept
|
| 385 |
+
return PicletGeneratorService.parse_concept(response_text)
|
| 386 |
+
|
| 387 |
+
@staticmethod
|
| 388 |
+
def parse_concept(concept_text: str) -> dict:
|
| 389 |
+
"""Parse structured concept text into dict"""
|
| 390 |
+
# Remove code block markers if present
|
| 391 |
+
if '```' in concept_text:
|
| 392 |
+
code_block_match = re.search(r'```(?:md|markdown)?\s*\n([\s\S]*?)```', concept_text)
|
| 393 |
+
if code_block_match:
|
| 394 |
+
concept_text = code_block_match.group(1).strip()
|
| 395 |
+
|
| 396 |
+
def extract_section(text: str, section: str) -> str:
|
| 397 |
+
"""Extract content of a markdown section"""
|
| 398 |
+
pattern = rf'\*{{0,2}}#\s*{re.escape(section)}\s*\*{{0,2}}\s*\n([\s\S]*?)(?=^\*{{0,2}}#|$)'
|
| 399 |
+
match = re.search(pattern, text, re.MULTILINE)
|
| 400 |
+
if match:
|
| 401 |
+
content = match.group(1).strip()
|
| 402 |
+
# Remove curly braces and quotes that GPT sometimes adds
|
| 403 |
+
content = re.sub(r'^[{"]|["}]$', '', content)
|
| 404 |
+
content = re.sub(r'^.*:\s*["\']|["\']$', '', content)
|
| 405 |
+
return content.strip()
|
| 406 |
+
return ''
|
| 407 |
+
|
| 408 |
+
# Extract all sections
|
| 409 |
+
object_name = extract_section(concept_text, 'Canonical Object').lower()
|
| 410 |
+
variation_text = extract_section(concept_text, 'Variation')
|
| 411 |
+
rarity_text = extract_section(concept_text, 'Object Rarity').lower()
|
| 412 |
+
monster_name = extract_section(concept_text, 'Monster Name')
|
| 413 |
+
primary_type = extract_section(concept_text, 'Primary Type').lower()
|
| 414 |
+
description = extract_section(concept_text, 'Monster Description')
|
| 415 |
+
image_prompt = extract_section(concept_text, 'Monster Image Prompt')
|
| 416 |
+
|
| 417 |
+
# Parse physical stats
|
| 418 |
+
physical_stats_text = extract_section(concept_text, 'Physical Stats')
|
| 419 |
+
height_match = re.search(r'Height:\s*(.+)', physical_stats_text, re.IGNORECASE)
|
| 420 |
+
weight_match = re.search(r'Weight:\s*(.+)', physical_stats_text, re.IGNORECASE)
|
| 421 |
+
height = height_match.group(1).strip() if height_match else None
|
| 422 |
+
weight = weight_match.group(1).strip() if weight_match else None
|
| 423 |
+
|
| 424 |
+
personality = extract_section(concept_text, 'Personality')
|
| 425 |
+
|
| 426 |
+
# Clean monster name
|
| 427 |
+
if monster_name:
|
| 428 |
+
monster_name = re.sub(r'\*+', '', monster_name) # Remove asterisks
|
| 429 |
+
if ',' in monster_name:
|
| 430 |
+
monster_name = monster_name.split(',')[0]
|
| 431 |
+
if len(monster_name) > 12:
|
| 432 |
+
monster_name = monster_name[:12]
|
| 433 |
+
|
| 434 |
+
# Parse variation
|
| 435 |
+
attributes = []
|
| 436 |
+
if variation_text and variation_text.lower() not in ['none', 'canonical', '']:
|
| 437 |
+
attributes = [variation_text.lower()]
|
| 438 |
+
|
| 439 |
+
# Map rarity to tier
|
| 440 |
+
tier = 'medium'
|
| 441 |
+
if 'common' in rarity_text:
|
| 442 |
+
tier = 'low'
|
| 443 |
+
elif 'uncommon' in rarity_text:
|
| 444 |
+
tier = 'medium'
|
| 445 |
+
elif 'rare' in rarity_text and 'epic' not in rarity_text:
|
| 446 |
+
tier = 'high'
|
| 447 |
+
elif 'legendary' in rarity_text or 'epic' in rarity_text or 'mythical' in rarity_text:
|
| 448 |
+
tier = 'legendary'
|
| 449 |
+
|
| 450 |
+
return {
|
| 451 |
+
'objectName': object_name,
|
| 452 |
+
'attributes': attributes,
|
| 453 |
+
'concept': concept_text,
|
| 454 |
+
'stats': {
|
| 455 |
+
'name': monster_name or 'Unknown',
|
| 456 |
+
'description': description,
|
| 457 |
+
'tier': tier,
|
| 458 |
+
'primaryType': primary_type or 'beast',
|
| 459 |
+
'height': height,
|
| 460 |
+
'weight': weight,
|
| 461 |
+
'personality': personality
|
| 462 |
+
},
|
| 463 |
+
'imagePrompt': image_prompt
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
+
@staticmethod
|
| 467 |
+
async def generate_piclet_image(image_prompt: str, tier: str, hf_token: str) -> dict:
|
| 468 |
+
"""Generate Piclet image using Flux"""
|
| 469 |
+
try:
|
| 470 |
+
print(f"Connecting to Flux space...")
|
| 471 |
+
client = await Client.connect(
|
| 472 |
+
PicletGeneratorService.FLUX_SPACE,
|
| 473 |
+
hf_token=hf_token
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
tier_descriptions = {
|
| 477 |
+
'low': 'simple and iconic design',
|
| 478 |
+
'medium': 'detailed and well-crafted design',
|
| 479 |
+
'high': 'highly detailed and impressive design with special effects',
|
| 480 |
+
'legendary': 'highly detailed and majestic design with dramatic lighting and aura effects'
|
| 481 |
+
}
|
| 482 |
+
|
| 483 |
+
full_prompt = f"{image_prompt}\nNow generate an Pokรฉmon Anime image of the monster in an idle pose with a plain dark-grey background. This is a {tier} tier monster with a {tier_descriptions.get(tier, tier_descriptions['medium'])}. The monster should not be attacking or in motion. The full monster must be visible within the frame."
|
| 484 |
+
|
| 485 |
+
print(f"Generating image with prompt: {full_prompt[:100]}...")
|
| 486 |
+
result = await client.predict(
|
| 487 |
+
prompt=full_prompt,
|
| 488 |
+
seed=0,
|
| 489 |
+
randomize_seed=True,
|
| 490 |
+
width=1024,
|
| 491 |
+
height=1024,
|
| 492 |
+
num_inference_steps=4,
|
| 493 |
+
api_name="/infer"
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
# Extract image URL and seed
|
| 497 |
+
image_data = result[0] if isinstance(result, (list, tuple)) else result
|
| 498 |
+
seed = result[1] if isinstance(result, (list, tuple)) and len(result) > 1 else 0
|
| 499 |
+
|
| 500 |
+
# Handle different return formats
|
| 501 |
+
image_url = None
|
| 502 |
+
if isinstance(image_data, str):
|
| 503 |
+
image_url = image_data
|
| 504 |
+
elif isinstance(image_data, dict):
|
| 505 |
+
image_url = image_data.get('url') or image_data.get('path')
|
| 506 |
+
|
| 507 |
+
if not image_url:
|
| 508 |
+
raise Exception("Failed to extract image URL from Flux response")
|
| 509 |
+
|
| 510 |
+
return {
|
| 511 |
+
'imageUrl': image_url,
|
| 512 |
+
'seed': seed,
|
| 513 |
+
'prompt': image_prompt
|
| 514 |
+
}
|
| 515 |
+
|
| 516 |
+
except Exception as e:
|
| 517 |
+
print(f"Failed to generate image: {e}")
|
| 518 |
+
raise Exception(f"Image generation failed: {str(e)}")
|
| 519 |
+
|
| 520 |
# API Endpoints
|
| 521 |
|
| 522 |
def search_piclet(object_name: str, attributes: List[str]) -> dict:
|
|
|
|
| 776 |
"error": str(e)
|
| 777 |
}
|
| 778 |
|
| 779 |
+
async def generate_piclet(image, hf_token: str) -> dict:
|
| 780 |
+
"""
|
| 781 |
+
Complete Piclet generation workflow - single endpoint
|
| 782 |
+
Takes user's image and hf_token, returns generated Piclet with discovery status
|
| 783 |
+
|
| 784 |
+
Args:
|
| 785 |
+
image: Uploaded image file (Gradio file input)
|
| 786 |
+
hf_token: User's HuggingFace OAuth token
|
| 787 |
+
|
| 788 |
+
Returns:
|
| 789 |
+
{
|
| 790 |
+
"success": bool,
|
| 791 |
+
"piclet": {complete piclet data},
|
| 792 |
+
"discoveryStatus": "new" | "variation" | "existing",
|
| 793 |
+
"canonicalId": str (if variation/existing),
|
| 794 |
+
"message": str
|
| 795 |
+
}
|
| 796 |
+
"""
|
| 797 |
+
try:
|
| 798 |
+
# Validate token and get user info
|
| 799 |
+
user_info = verify_hf_token(hf_token)
|
| 800 |
+
if not user_info:
|
| 801 |
+
return {
|
| 802 |
+
"success": False,
|
| 803 |
+
"error": "Invalid HuggingFace token"
|
| 804 |
+
}
|
| 805 |
+
|
| 806 |
+
print(f"Generating Piclet for user: {user_info.get('preferred_username', 'unknown')}")
|
| 807 |
+
|
| 808 |
+
# Get user profile (creates if doesn't exist)
|
| 809 |
+
user_profile = PicletDiscoveryService.get_or_create_user_profile(user_info)
|
| 810 |
+
|
| 811 |
+
# Extract image path from Gradio file input
|
| 812 |
+
image_path = image if isinstance(image, str) else image.name if hasattr(image, 'name') else str(image)
|
| 813 |
+
|
| 814 |
+
# Step 1: Generate caption
|
| 815 |
+
print("Step 1/5: Generating image caption...")
|
| 816 |
+
caption = await PicletGeneratorService.generate_enhanced_caption(image_path, hf_token)
|
| 817 |
+
|
| 818 |
+
# Step 2: Generate concept
|
| 819 |
+
print("Step 2/5: Generating Piclet concept...")
|
| 820 |
+
concept_data = await PicletGeneratorService.generate_piclet_concept(caption, hf_token)
|
| 821 |
+
|
| 822 |
+
object_name = concept_data['objectName']
|
| 823 |
+
attributes = concept_data['attributes']
|
| 824 |
+
stats = concept_data['stats']
|
| 825 |
+
image_prompt = concept_data['imagePrompt']
|
| 826 |
+
concept_text = concept_data['concept']
|
| 827 |
+
|
| 828 |
+
# Step 3: Generate image
|
| 829 |
+
print("Step 3/5: Generating Piclet image...")
|
| 830 |
+
image_result = await PicletGeneratorService.generate_piclet_image(
|
| 831 |
+
image_prompt,
|
| 832 |
+
stats['tier'],
|
| 833 |
+
hf_token
|
| 834 |
+
)
|
| 835 |
+
|
| 836 |
+
# Step 4: Check for canonical/variation
|
| 837 |
+
print("Step 4/5: Checking for existing canonical...")
|
| 838 |
+
existing_data = PicletDiscoveryService.load_piclet_data(object_name)
|
| 839 |
+
|
| 840 |
+
discovery_status = 'new'
|
| 841 |
+
canonical_id = None
|
| 842 |
+
scan_count = 1
|
| 843 |
+
|
| 844 |
+
if existing_data:
|
| 845 |
+
# Check if this is an exact canonical match (no attributes)
|
| 846 |
+
if not attributes or len(attributes) == 0:
|
| 847 |
+
discovery_status = 'existing'
|
| 848 |
+
canonical_id = existing_data['canonical']['typeId']
|
| 849 |
+
# Increment scan count
|
| 850 |
+
existing_data['canonical']['scanCount'] = existing_data['canonical'].get('scanCount', 0) + 1
|
| 851 |
+
scan_count = existing_data['canonical']['scanCount']
|
| 852 |
+
PicletDiscoveryService.save_piclet_data(object_name, existing_data)
|
| 853 |
+
else:
|
| 854 |
+
# Check for matching variation
|
| 855 |
+
variations = existing_data.get('variations', [])
|
| 856 |
+
matched_variation = None
|
| 857 |
+
|
| 858 |
+
for variation in variations:
|
| 859 |
+
var_attrs = set(variation.get('attributes', []))
|
| 860 |
+
search_attrs = set(attributes)
|
| 861 |
+
overlap = len(var_attrs.intersection(search_attrs))
|
| 862 |
+
|
| 863 |
+
if overlap >= len(search_attrs) * 0.5:
|
| 864 |
+
matched_variation = variation
|
| 865 |
+
discovery_status = 'existing'
|
| 866 |
+
canonical_id = existing_data['canonical']['typeId']
|
| 867 |
+
# Increment variation scan count
|
| 868 |
+
variation['scanCount'] = variation.get('scanCount', 0) + 1
|
| 869 |
+
scan_count = variation['scanCount']
|
| 870 |
+
PicletDiscoveryService.save_piclet_data(object_name, existing_data)
|
| 871 |
+
break
|
| 872 |
+
|
| 873 |
+
if not matched_variation:
|
| 874 |
+
discovery_status = 'variation'
|
| 875 |
+
canonical_id = existing_data['canonical']['typeId']
|
| 876 |
+
|
| 877 |
+
# Step 5: Save new discovery if needed
|
| 878 |
+
print("Step 5/5: Saving to dataset...")
|
| 879 |
+
if discovery_status == 'new':
|
| 880 |
+
# Create new canonical
|
| 881 |
+
type_id = f"{PicletDiscoveryService.normalize_object_name(object_name)}_canonical"
|
| 882 |
+
canonical_data = {
|
| 883 |
+
"canonical": {
|
| 884 |
+
"objectName": object_name,
|
| 885 |
+
"typeId": type_id,
|
| 886 |
+
"discoveredBy": user_info['preferred_username'],
|
| 887 |
+
"discovererSub": user_info['sub'],
|
| 888 |
+
"discovererUsername": user_info['preferred_username'],
|
| 889 |
+
"discovererName": user_info.get('name'),
|
| 890 |
+
"discovererPicture": user_info.get('picture'),
|
| 891 |
+
"discoveredAt": datetime.now().isoformat(),
|
| 892 |
+
"scanCount": scan_count,
|
| 893 |
+
"picletData": {
|
| 894 |
+
"typeId": type_id,
|
| 895 |
+
"nickname": stats['name'],
|
| 896 |
+
"stats": stats,
|
| 897 |
+
"imageUrl": image_result['imageUrl'],
|
| 898 |
+
"imageCaption": caption,
|
| 899 |
+
"concept": concept_text,
|
| 900 |
+
"imagePrompt": image_prompt,
|
| 901 |
+
"createdAt": datetime.now().isoformat()
|
| 902 |
+
}
|
| 903 |
+
},
|
| 904 |
+
"variations": []
|
| 905 |
+
}
|
| 906 |
+
canonical_id = type_id
|
| 907 |
+
|
| 908 |
+
PicletDiscoveryService.save_piclet_data(object_name, canonical_data)
|
| 909 |
+
|
| 910 |
+
# Update user profile
|
| 911 |
+
user_profile["discoveries"].append(type_id)
|
| 912 |
+
user_profile["uniqueFinds"] = user_profile.get("uniqueFinds", 0) + 1
|
| 913 |
+
user_profile["totalFinds"] = user_profile.get("totalFinds", 0) + 1
|
| 914 |
+
user_profile["rarityScore"] = user_profile.get("rarityScore", 0) + 100
|
| 915 |
+
PicletDiscoveryService.save_user_data(user_info['sub'], user_profile)
|
| 916 |
+
|
| 917 |
+
elif discovery_status == 'variation':
|
| 918 |
+
# Create new variation
|
| 919 |
+
existing_data = PicletDiscoveryService.load_piclet_data(object_name)
|
| 920 |
+
variation_id = f"{PicletDiscoveryService.normalize_object_name(object_name)}_{len(existing_data['variations']) + 1:03d}"
|
| 921 |
+
|
| 922 |
+
variation_data = {
|
| 923 |
+
"typeId": variation_id,
|
| 924 |
+
"attributes": attributes,
|
| 925 |
+
"discoveredBy": user_info['preferred_username'],
|
| 926 |
+
"discovererSub": user_info['sub'],
|
| 927 |
+
"discovererUsername": user_info['preferred_username'],
|
| 928 |
+
"discovererName": user_info.get('name'),
|
| 929 |
+
"discovererPicture": user_info.get('picture'),
|
| 930 |
+
"discoveredAt": datetime.now().isoformat(),
|
| 931 |
+
"scanCount": scan_count,
|
| 932 |
+
"picletData": {
|
| 933 |
+
"typeId": variation_id,
|
| 934 |
+
"nickname": stats['name'],
|
| 935 |
+
"stats": stats,
|
| 936 |
+
"imageUrl": image_result['imageUrl'],
|
| 937 |
+
"imageCaption": caption,
|
| 938 |
+
"concept": concept_text,
|
| 939 |
+
"imagePrompt": image_prompt,
|
| 940 |
+
"createdAt": datetime.now().isoformat()
|
| 941 |
+
}
|
| 942 |
+
}
|
| 943 |
+
|
| 944 |
+
existing_data['variations'].append(variation_data)
|
| 945 |
+
PicletDiscoveryService.save_piclet_data(object_name, existing_data)
|
| 946 |
+
|
| 947 |
+
# Update user profile
|
| 948 |
+
user_profile["discoveries"].append(variation_id)
|
| 949 |
+
user_profile["totalFinds"] = user_profile.get("totalFinds", 0) + 1
|
| 950 |
+
user_profile["rarityScore"] = user_profile.get("rarityScore", 0) + 50
|
| 951 |
+
PicletDiscoveryService.save_user_data(user_info['sub'], user_profile)
|
| 952 |
+
|
| 953 |
+
# Build complete response
|
| 954 |
+
piclet_data = {
|
| 955 |
+
"typeId": canonical_id,
|
| 956 |
+
"nickname": stats['name'],
|
| 957 |
+
"stats": stats,
|
| 958 |
+
"imageUrl": image_result['imageUrl'],
|
| 959 |
+
"imageCaption": caption,
|
| 960 |
+
"concept": concept_text,
|
| 961 |
+
"imagePrompt": image_prompt,
|
| 962 |
+
"objectName": object_name,
|
| 963 |
+
"attributes": attributes,
|
| 964 |
+
"discoveryStatus": discovery_status,
|
| 965 |
+
"scanCount": scan_count,
|
| 966 |
+
"createdAt": datetime.now().isoformat()
|
| 967 |
+
}
|
| 968 |
+
|
| 969 |
+
messages = {
|
| 970 |
+
'new': f"Congratulations! You discovered the first {object_name} Piclet!",
|
| 971 |
+
'variation': f"You found a new variation of {object_name}!",
|
| 972 |
+
'existing': f"You encountered a known {object_name} Piclet."
|
| 973 |
+
}
|
| 974 |
+
|
| 975 |
+
return {
|
| 976 |
+
"success": True,
|
| 977 |
+
"piclet": piclet_data,
|
| 978 |
+
"discoveryStatus": discovery_status,
|
| 979 |
+
"canonicalId": canonical_id,
|
| 980 |
+
"message": messages.get(discovery_status, "Piclet generated!")
|
| 981 |
+
}
|
| 982 |
+
|
| 983 |
+
except Exception as e:
|
| 984 |
+
print(f"Failed to generate Piclet: {e}")
|
| 985 |
+
import traceback
|
| 986 |
+
traceback.print_exc()
|
| 987 |
+
return {
|
| 988 |
+
"success": False,
|
| 989 |
+
"error": str(e)
|
| 990 |
+
}
|
| 991 |
+
|
| 992 |
+
def get_object_details(object_name: str) -> dict:
|
| 993 |
+
"""
|
| 994 |
+
Get complete details for an object (canonical + all variations)
|
| 995 |
+
|
| 996 |
+
Args:
|
| 997 |
+
object_name: The object name (e.g., "pillow", "macbook")
|
| 998 |
+
|
| 999 |
+
Returns:
|
| 1000 |
+
{
|
| 1001 |
+
"success": bool,
|
| 1002 |
+
"objectName": str,
|
| 1003 |
+
"canonical": {canonical data},
|
| 1004 |
+
"variations": [list of variations],
|
| 1005 |
+
"totalScans": int
|
| 1006 |
+
}
|
| 1007 |
+
"""
|
| 1008 |
+
try:
|
| 1009 |
+
# Load the object data
|
| 1010 |
+
piclet_data = PicletDiscoveryService.load_piclet_data(object_name)
|
| 1011 |
+
|
| 1012 |
+
if not piclet_data:
|
| 1013 |
+
return {
|
| 1014 |
+
"success": False,
|
| 1015 |
+
"error": f"No piclet found for object '{object_name}'",
|
| 1016 |
+
"objectName": object_name
|
| 1017 |
+
}
|
| 1018 |
+
|
| 1019 |
+
# Calculate total scans across canonical and variations
|
| 1020 |
+
total_scans = piclet_data['canonical'].get('scanCount', 0)
|
| 1021 |
+
for variation in piclet_data.get('variations', []):
|
| 1022 |
+
total_scans += variation.get('scanCount', 0)
|
| 1023 |
+
|
| 1024 |
+
return {
|
| 1025 |
+
"success": True,
|
| 1026 |
+
"objectName": object_name,
|
| 1027 |
+
"canonical": piclet_data['canonical'],
|
| 1028 |
+
"variations": piclet_data.get('variations', []),
|
| 1029 |
+
"totalScans": total_scans,
|
| 1030 |
+
"variationCount": len(piclet_data.get('variations', []))
|
| 1031 |
+
}
|
| 1032 |
+
|
| 1033 |
+
except Exception as e:
|
| 1034 |
+
print(f"Failed to get object details: {e}")
|
| 1035 |
+
return {
|
| 1036 |
+
"success": False,
|
| 1037 |
+
"error": str(e),
|
| 1038 |
+
"objectName": object_name
|
| 1039 |
+
}
|
| 1040 |
+
|
| 1041 |
+
def get_user_piclets(hf_token: str) -> dict:
|
| 1042 |
+
"""
|
| 1043 |
+
Get all Piclets discovered by a specific user
|
| 1044 |
+
|
| 1045 |
+
Args:
|
| 1046 |
+
hf_token: User's HuggingFace OAuth token
|
| 1047 |
+
|
| 1048 |
+
Returns:
|
| 1049 |
+
{
|
| 1050 |
+
"success": bool,
|
| 1051 |
+
"piclets": [list of piclet discoveries],
|
| 1052 |
+
"stats": {user stats}
|
| 1053 |
+
}
|
| 1054 |
+
"""
|
| 1055 |
+
try:
|
| 1056 |
+
# Verify token and get user info
|
| 1057 |
+
user_info = verify_hf_token(hf_token)
|
| 1058 |
+
if not user_info:
|
| 1059 |
+
return {
|
| 1060 |
+
"success": False,
|
| 1061 |
+
"error": "Invalid HuggingFace token",
|
| 1062 |
+
"piclets": []
|
| 1063 |
+
}
|
| 1064 |
+
|
| 1065 |
+
# Load user profile
|
| 1066 |
+
user_profile = PicletDiscoveryService.load_user_data(user_info['sub'])
|
| 1067 |
+
|
| 1068 |
+
# Get list of discoveries
|
| 1069 |
+
discoveries = user_profile.get('discoveries', [])
|
| 1070 |
+
piclets = []
|
| 1071 |
+
|
| 1072 |
+
# Load each discovered piclet
|
| 1073 |
+
for type_id in discoveries:
|
| 1074 |
+
# Extract object name from type_id (e.g., "pillow_canonical" -> "pillow")
|
| 1075 |
+
object_name = type_id.rsplit('_', 1)[0]
|
| 1076 |
+
|
| 1077 |
+
# Load the piclet data
|
| 1078 |
+
piclet_data = PicletDiscoveryService.load_piclet_data(object_name)
|
| 1079 |
+
if piclet_data:
|
| 1080 |
+
# Check if it's canonical or variation
|
| 1081 |
+
if piclet_data['canonical']['typeId'] == type_id:
|
| 1082 |
+
piclets.append({
|
| 1083 |
+
'type': 'canonical',
|
| 1084 |
+
'typeId': type_id,
|
| 1085 |
+
'objectName': object_name,
|
| 1086 |
+
'discoveredAt': piclet_data['canonical']['discoveredAt'],
|
| 1087 |
+
'scanCount': piclet_data['canonical'].get('scanCount', 1),
|
| 1088 |
+
'picletData': piclet_data['canonical'].get('picletData', {})
|
| 1089 |
+
})
|
| 1090 |
+
else:
|
| 1091 |
+
# Find matching variation
|
| 1092 |
+
for variation in piclet_data.get('variations', []):
|
| 1093 |
+
if variation['typeId'] == type_id:
|
| 1094 |
+
piclets.append({
|
| 1095 |
+
'type': 'variation',
|
| 1096 |
+
'typeId': type_id,
|
| 1097 |
+
'objectName': object_name,
|
| 1098 |
+
'attributes': variation.get('attributes', []),
|
| 1099 |
+
'discoveredAt': variation['discoveredAt'],
|
| 1100 |
+
'scanCount': variation.get('scanCount', 1),
|
| 1101 |
+
'picletData': variation.get('picletData', {})
|
| 1102 |
+
})
|
| 1103 |
+
break
|
| 1104 |
+
|
| 1105 |
+
# Sort by discovery date (most recent first)
|
| 1106 |
+
piclets.sort(key=lambda x: x.get('discoveredAt', ''), reverse=True)
|
| 1107 |
+
|
| 1108 |
+
return {
|
| 1109 |
+
"success": True,
|
| 1110 |
+
"piclets": piclets,
|
| 1111 |
+
"stats": {
|
| 1112 |
+
"username": user_info.get('preferred_username'),
|
| 1113 |
+
"name": user_info.get('name'),
|
| 1114 |
+
"picture": user_info.get('picture'),
|
| 1115 |
+
"totalFinds": user_profile.get('totalFinds', 0),
|
| 1116 |
+
"uniqueFinds": user_profile.get('uniqueFinds', 0),
|
| 1117 |
+
"rarityScore": user_profile.get('rarityScore', 0),
|
| 1118 |
+
"joinedAt": user_profile.get('joinedAt')
|
| 1119 |
+
}
|
| 1120 |
+
}
|
| 1121 |
+
|
| 1122 |
+
except Exception as e:
|
| 1123 |
+
print(f"Failed to get user piclets: {e}")
|
| 1124 |
+
return {
|
| 1125 |
+
"success": False,
|
| 1126 |
+
"error": str(e),
|
| 1127 |
+
"piclets": []
|
| 1128 |
+
}
|
| 1129 |
+
|
| 1130 |
def get_recent_activity(limit: int = 20) -> dict:
|
| 1131 |
"""
|
| 1132 |
Get recent discoveries across all users
|
|
|
|
| 1242 |
"leaderboard": []
|
| 1243 |
}
|
| 1244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1245 |
# Create Gradio interface
|
| 1246 |
with gr.Blocks(title="Piclets Discovery Server") as app:
|
| 1247 |
gr.Markdown("""
|
|
|
|
| 1250 |
Backend service for the Piclets discovery game. Each real-world object has ONE canonical Piclet!
|
| 1251 |
""")
|
| 1252 |
|
| 1253 |
+
with gr.Tab("Generate Piclet"):
|
| 1254 |
+
gr.Markdown("""
|
| 1255 |
+
## ๐ฎ Complete Piclet Generator
|
| 1256 |
+
Upload an image and provide your HuggingFace token to generate a complete Piclet.
|
| 1257 |
+
This endpoint handles the entire workflow: captioning, concept generation, image creation, and dataset storage.
|
| 1258 |
+
""")
|
| 1259 |
with gr.Row():
|
| 1260 |
with gr.Column():
|
| 1261 |
+
gen_image = gr.Image(label="Upload Image", type="filepath")
|
| 1262 |
+
gen_token = gr.Textbox(label="HuggingFace Token", placeholder="hf_...", type="password")
|
| 1263 |
+
gen_btn = gr.Button("Generate Piclet", variant="primary")
|
| 1264 |
with gr.Column():
|
| 1265 |
+
gen_result = gr.JSON(label="Generated Piclet Result")
|
| 1266 |
|
| 1267 |
+
gen_btn.click(
|
| 1268 |
+
fn=generate_piclet,
|
| 1269 |
+
inputs=[gen_image, gen_token],
|
| 1270 |
+
outputs=gen_result
|
| 1271 |
)
|
| 1272 |
|
| 1273 |
+
with gr.Tab("My Piclets"):
|
| 1274 |
+
gr.Markdown("""
|
| 1275 |
+
## ๐ Your Discovery Collection
|
| 1276 |
+
View all Piclets you've discovered (includes your stats).
|
| 1277 |
+
""")
|
| 1278 |
with gr.Row():
|
| 1279 |
with gr.Column():
|
| 1280 |
+
my_token = gr.Textbox(label="HuggingFace Token", placeholder="hf_...", type="password")
|
| 1281 |
+
my_btn = gr.Button("Get My Piclets", variant="primary")
|
|
|
|
|
|
|
| 1282 |
with gr.Column():
|
| 1283 |
+
my_result = gr.JSON(label="My Piclets")
|
| 1284 |
|
| 1285 |
+
my_btn.click(
|
| 1286 |
+
fn=get_user_piclets,
|
| 1287 |
+
inputs=my_token,
|
| 1288 |
+
outputs=my_result
|
| 1289 |
)
|
| 1290 |
|
| 1291 |
+
with gr.Tab("Object Details"):
|
| 1292 |
+
gr.Markdown("""
|
| 1293 |
+
## ๐ View Object Details
|
| 1294 |
+
Get complete information about an object (canonical + all variations).
|
| 1295 |
+
""")
|
| 1296 |
with gr.Row():
|
| 1297 |
with gr.Column():
|
| 1298 |
+
obj_name = gr.Textbox(label="Object Name", placeholder="e.g., pillow, macbook")
|
| 1299 |
+
obj_btn = gr.Button("Get Details", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1300 |
with gr.Column():
|
| 1301 |
+
obj_result = gr.JSON(label="Object Details")
|
| 1302 |
+
|
| 1303 |
+
obj_btn.click(
|
| 1304 |
+
fn=get_object_details,
|
| 1305 |
+
inputs=obj_name,
|
| 1306 |
+
outputs=obj_result
|
|
|
|
|
|
|
| 1307 |
)
|
| 1308 |
|
| 1309 |
+
with gr.Tab("Recent Activity"):
|
| 1310 |
activity_limit = gr.Slider(5, 50, value=20, label="Number of Activities")
|
| 1311 |
activity_btn = gr.Button("Get Recent Activity")
|
| 1312 |
activity_result = gr.JSON(label="Recent Discoveries")
|
|
|
|
| 1328 |
outputs=leader_result
|
| 1329 |
)
|
| 1330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1331 |
# API Documentation
|
| 1332 |
gr.Markdown("""
|
| 1333 |
+
## ๐ Public API Endpoints
|
| 1334 |
+
|
| 1335 |
+
All endpoints return JSON responses. The frontend only needs these 5 endpoints:
|
| 1336 |
+
|
| 1337 |
+
### 1. **generate_piclet** (Scanner)
|
| 1338 |
+
Complete Piclet generation workflow.
|
| 1339 |
+
- Input: `image` (File), `hf_token` (string)
|
| 1340 |
+
- Output: Generated Piclet with discovery status
|
| 1341 |
+
|
| 1342 |
+
### 2. **get_user_piclets** (User Collection)
|
| 1343 |
+
Get user's discovered Piclets and stats.
|
| 1344 |
+
- Input: `hf_token` (string)
|
| 1345 |
+
- Output: List of Piclets + user stats (total/unique finds, rarity score)
|
| 1346 |
+
|
| 1347 |
+
### 3. **get_object_details** (Object Data)
|
| 1348 |
+
Get complete object info (canonical + all variations).
|
| 1349 |
+
- Input: `object_name` (string)
|
| 1350 |
+
- Output: Canonical + variations + total scans
|
| 1351 |
|
| 1352 |
+
### 4. **get_recent_activity** (Activity Feed)
|
| 1353 |
+
Recent discoveries across all users.
|
| 1354 |
+
- Input: `limit` (int, default 20)
|
| 1355 |
+
- Output: Recent discoveries with timestamps
|
| 1356 |
|
| 1357 |
+
### 5. **get_leaderboard** (Top Users)
|
| 1358 |
+
Top discoverers by rarity score.
|
| 1359 |
+
- Input: `limit` (int, default 10)
|
| 1360 |
+
- Output: Ranked users with stats
|
|
|
|
|
|
|
|
|
|
| 1361 |
|
| 1362 |
+
---
|
| 1363 |
+
*Note: Internal helper functions (search_piclet, create_canonical, etc.) are used by generate_piclet but not exposed to frontend.*
|
| 1364 |
""")
|
| 1365 |
|
| 1366 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
gradio==5.38.2
|
|
|
|
| 2 |
Pillow>=9.0.0
|
| 3 |
huggingface_hub>=0.20.0
|
| 4 |
datasets>=2.15.0
|
|
|
|
| 1 |
gradio==5.38.2
|
| 2 |
+
gradio_client>=1.0.0
|
| 3 |
Pillow>=9.0.0
|
| 4 |
huggingface_hub>=0.20.0
|
| 5 |
datasets>=2.15.0
|