Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import torch | |
| import time | |
| from threading import Thread | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| TextIteratorStreamer | |
| ) | |
| # App title | |
| st.set_page_config(page_title="πΆβπ«οΈ FuseChat Model") | |
| root_path = "FuseAI" | |
| def load_model(model_name): | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| f"{root_path}/{model_name}", | |
| trust_remote_code=True, | |
| ) | |
| if tokenizer.pad_token_id is None: | |
| if tokenizer.eos_token_id is not None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| else: | |
| tokenizer.pad_token_id = 0 | |
| model = AutoModelForCausalLM.from_pretrained( | |
| f"{root_path}/{model_name}", | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| trust_remote_code=True, | |
| ) | |
| model.eval() | |
| return model, tokenizer | |
| with st.sidebar: | |
| st.title('πΆβπ«οΈ FuseChat') | |
| st.write('This chatbot is created using FuseChat, a model developed by FuseAI') | |
| st.subheader('Models and parameters') | |
| selected_model = st.sidebar.selectbox('Choose a FuseChat model', ['FuseChat-7B-VaRM', 'FuseChat-7B-Slerp', 'FuseChat-7B-TA'], key='selected_model') | |
| temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=5.0, value=0.1, step=0.01) | |
| top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01) | |
| top_k = st.sidebar.slider('top_k', min_value=1, max_value=1000, value=50, step=1) | |
| repetition_penalty = st.sidebar.slider('repetition penalty', min_value=1., max_value=2., value=1.2, step=0.05) | |
| max_length = st.sidebar.slider('max new tokens', min_value=32, max_value=2000, value=240, step=8) | |
| with st.spinner('loading model..'): | |
| model, tokenizer = load_model(selected_model) | |
| # Store LLM generated responses | |
| if "messages" not in st.session_state.keys(): | |
| st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] | |
| # Display or clear chat messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| def clear_chat_history(): | |
| st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] | |
| st.sidebar.button('Clear Chat History', on_click=clear_chat_history) | |
| def generate_fusechat_response(): | |
| string_dialogue = "You are a helpful and harmless assistant." | |
| for dict_message in st.session_state.messages: | |
| if dict_message["role"] == "user": | |
| string_dialogue += "GPT4 Correct User: " + dict_message["content"] + "<|end_of_turn|>" | |
| else: | |
| string_dialogue += "GPT4 Correct Assistant: " + dict_message["content"] + "<|end_of_turn|>" | |
| input_ids = tokenizer(f"{string_dialogue}GPT4 Correct Assistant: ", return_tensors="pt").input_ids | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_length, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| return "".join(outputs) | |
| # User-provided prompt | |
| if prompt := st.chat_input("Hello there! How are you doing?"): | |
| st.session_state.messages.append({"role": "user", "content": prompt}) | |
| with st.chat_message("user"): | |
| st.write(prompt) | |
| # Generate a new response if last message is not from assistant | |
| if st.session_state.messages[-1]["role"] != "assistant": | |
| with st.chat_message("assistant"): | |
| with st.spinner("Thinking..."): | |
| response = generate_fusechat_response() | |
| placeholder = st.empty() | |
| full_response = '' | |
| for item in response: | |
| full_response += item | |
| time.sleep(0.05) | |
| placeholder.markdown(full_response + "β") | |
| placeholder.markdown(full_response) | |
| message = {"role": "assistant", "content": full_response} | |
| st.session_state.messages.append(message) |