Spaces:
Sleeping
Sleeping
| import librosa | |
| import torch | |
| import numpy as np | |
| import langid | |
| from transformers import Wav2Vec2ForCTC, AutoProcessor | |
| ASR_SAMPLING_RATE = 16_000 | |
| MODEL_ID = "facebook/mms-1b-all" # Or your model ID | |
| # Load MMS Model (outside the function, for efficiency) | |
| try: | |
| processor = AutoProcessor.from_pretrained(MODEL_ID) | |
| model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
| model.eval() | |
| except Exception as e: | |
| print(f"Error loading initial model: {e}") # Handle initial model loading errors | |
| exit(1) # Or raise the exception if you prefer | |
| def detect_language(text): | |
| lang, _ = langid.classify(text) | |
| return lang if lang in ["en", "sw"] else "en" | |
| def transcribe_auto(audio_data=None): | |
| if not audio_data: | |
| return "<<ERROR: Empty Audio Input>>" | |
| # ... (audio processing code remains the same) ... | |
| try: # Wrap the entire transcription process | |
| # **Step 1: Transcribe without Language Detection** | |
| with torch.no_grad(): | |
| outputs = model(**inputs).logits | |
| ids = torch.argmax(outputs, dim=-1)[0] | |
| raw_transcription = processor.decode(ids) | |
| # **Step 2: Detect Language from Transcription** | |
| detected_lang = detect_language(raw_transcription) | |
| lang_code = "eng" if detected_lang == "en" else "swh" | |
| # **Step 3: Reload Model with Correct Adapter (CRITICAL CHANGE)** | |
| try: # Wrap adapter loading | |
| processor.tokenizer.set_target_lang(lang_code) | |
| model.load_adapter(lang_code) # This is the most likely source of errors | |
| except Exception as adapter_error: # Catch adapter loading errors | |
| print(f"Error loading adapter for {detected_lang}: {adapter_error}") | |
| return f"<<ERROR: Could not load adapter for {detected_lang}>>" # Or raise | |
| # **Step 4: Transcribe Again with Correct Adapter** | |
| with torch.no_grad(): | |
| outputs = model(**inputs).logits | |
| ids = torch.argmax(outputs, dim=-1)[0] | |
| final_transcription = processor.decode(ids) | |
| return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}" | |
| except Exception as overall_error: # Catch any other errors during transcription | |
| print(f"An error occurred during transcription: {overall_error}") | |
| return f"<<ERROR: {overall_error}>>" | |