Spaces:
Sleeping
Sleeping
| import librosa | |
| import torch | |
| import numpy as np | |
| import langid # Language detection library | |
| from transformers import Wav2Vec2ForCTC, AutoProcessor | |
| ASR_SAMPLING_RATE = 16_000 | |
| MODEL_ID = "facebook/mms-1b-all" | |
| # Load MMS Model | |
| processor = AutoProcessor.from_pretrained(MODEL_ID) | |
| model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
| model.eval() | |
| def detect_language(text): | |
| """Detects language using langid (fast & lightweight).""" | |
| lang, _ = langid.classify(text) | |
| return lang if lang in ["en", "sw"] else "en" # Default to English | |
| def transcribe_auto(audio_data=None): | |
| if not audio_data: | |
| return "<<ERROR: Empty Audio Input>>" | |
| # Process Microphone Input | |
| if isinstance(audio_data, tuple): | |
| sr, audio_samples = audio_data | |
| audio_samples = (audio_samples / 32768.0).astype(np.float32) | |
| if sr != ASR_SAMPLING_RATE: | |
| audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE) | |
| # Process File Upload Input | |
| else: | |
| if not isinstance(audio_data, str): | |
| return "<<ERROR: Invalid Audio Input>>" | |
| audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0] | |
| inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt") | |
| # **Step 1: Transcribe without Language Detection** | |
| with torch.no_grad(): | |
| outputs = model(**inputs).logits | |
| ids = torch.argmax(outputs, dim=-1)[0] | |
| raw_transcription = processor.decode(ids) | |
| # **Step 2: Detect Language from Transcription** | |
| detected_lang = detect_language(raw_transcription) | |
| lang_code = "eng" if detected_lang == "en" else "swh" | |
| # **Step 3: Reload Model with Correct Adapter** | |
| processor.tokenizer.set_target_lang(lang_code) | |
| model.load_adapter(lang_code) | |
| # **Step 4: Transcribe Again with Correct Adapter** | |
| with torch.no_grad(): | |
| outputs = model(**inputs).logits | |
| ids = torch.argmax(outputs, dim=-1)[0] | |
| final_transcription = processor.decode(ids) | |
| return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}" | |