Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import subprocess | |
| import os | |
| from huggingface_hub import InferenceClient | |
| # Initialize Chatbot Model (Futuresony.gguf) | |
| chat_client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") # Change if needed | |
| def asr_chat_tts(audio): | |
| """ | |
| 1. Convert Speech to Text using asr.py | |
| 2. Process text through Chat Model (Futuresony.gguf) | |
| 3. Convert response to Speech using tts.py | |
| """ | |
| # Step 1: Run ASR (Speech-to-Text) | |
| asr_output = subprocess.run(["python3", "asr.py", audio], capture_output=True, text=True) | |
| transcription = asr_output.stdout.strip() | |
| # Step 2: Process text through the chat model | |
| messages = [{"role": "system", "content": "You are a helpful AI assistant."}] | |
| messages.append({"role": "user", "content": transcription}) | |
| response = "" | |
| for msg in chat_client.chat_completion(messages, max_tokens=512, stream=True): | |
| token = msg.choices[0].delta.content | |
| response += token | |
| # Step 3: Run TTS (Text-to-Speech) | |
| tts_output_file = "generated_speech.wav" | |
| subprocess.run(["python3", "tts.py", response, tts_output_file]) | |
| return transcription, response, tts_output_file | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h2 style='text-align: center;'>ASR β Chatbot β TTS</h2>") | |
| with gr.Row(): | |
| audio_input = gr.Audio(source="microphone", type="filepath", label="π€ Speak Here") | |
| text_transcription = gr.Textbox(label="π Transcription", interactive=False) | |
| text_response = gr.Textbox(label="π€ Chatbot Response", interactive=False) | |
| audio_output = gr.Audio(label="π Generated Speech") | |
| submit_button = gr.Button("Process Speech π") | |
| submit_button.click(fn=asr_chat_tts, inputs=[audio_input], outputs=[text_transcription, text_response, audio_output]) | |
| # Run the App | |
| if __name__ == "__main__": | |
| demo.launch() | |