Spaces:
Sleeping
Sleeping
Update tts.py
Browse files
tts.py
CHANGED
|
@@ -1,176 +1,3 @@
|
|
| 1 |
-
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 2 |
-
#
|
| 3 |
-
# This source code is licensed under the MIT license found in the
|
| 4 |
-
# LICENSE file in the root directory of this source tree.
|
| 5 |
-
|
| 6 |
-
import os
|
| 7 |
-
import re
|
| 8 |
-
import tempfile
|
| 9 |
-
import torch
|
| 10 |
-
import sys
|
| 11 |
-
import gradio as gr
|
| 12 |
-
import numpy as np
|
| 13 |
-
|
| 14 |
-
from huggingface_hub import hf_hub_download
|
| 15 |
-
|
| 16 |
-
# Setup TTS env
|
| 17 |
-
if "vits" not in sys.path:
|
| 18 |
-
sys.path.append("vits")
|
| 19 |
-
|
| 20 |
-
from vits import commons, utils
|
| 21 |
-
from vits.models import SynthesizerTrn
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
TTS_LANGUAGES = {}
|
| 25 |
-
with open(f"data/tts/all_langs.tsv") as f:
|
| 26 |
-
for line in f:
|
| 27 |
-
iso, name = line.split(" ", 1)
|
| 28 |
-
TTS_LANGUAGES[iso.strip()] = name.strip()
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class TextMapper(object):
|
| 32 |
-
def __init__(self, vocab_file):
|
| 33 |
-
self.symbols = [
|
| 34 |
-
x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
|
| 35 |
-
]
|
| 36 |
-
self.SPACE_ID = self.symbols.index(" ")
|
| 37 |
-
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
|
| 38 |
-
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
|
| 39 |
-
|
| 40 |
-
def text_to_sequence(self, text, cleaner_names):
|
| 41 |
-
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
| 42 |
-
Args:
|
| 43 |
-
text: string to convert to a sequence
|
| 44 |
-
cleaner_names: names of the cleaner functions to run the text through
|
| 45 |
-
Returns:
|
| 46 |
-
List of integers corresponding to the symbols in the text
|
| 47 |
-
"""
|
| 48 |
-
sequence = []
|
| 49 |
-
clean_text = text.strip()
|
| 50 |
-
for symbol in clean_text:
|
| 51 |
-
symbol_id = self._symbol_to_id[symbol]
|
| 52 |
-
sequence += [symbol_id]
|
| 53 |
-
return sequence
|
| 54 |
-
|
| 55 |
-
def uromanize(self, text, uroman_pl):
|
| 56 |
-
iso = "xxx"
|
| 57 |
-
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
|
| 58 |
-
with open(tf.name, "w") as f:
|
| 59 |
-
f.write("\n".join([text]))
|
| 60 |
-
cmd = f"perl " + uroman_pl
|
| 61 |
-
cmd += f" -l {iso} "
|
| 62 |
-
cmd += f" < {tf.name} > {tf2.name}"
|
| 63 |
-
os.system(cmd)
|
| 64 |
-
outtexts = []
|
| 65 |
-
with open(tf2.name) as f:
|
| 66 |
-
for line in f:
|
| 67 |
-
line = re.sub(r"\s+", " ", line).strip()
|
| 68 |
-
outtexts.append(line)
|
| 69 |
-
outtext = outtexts[0]
|
| 70 |
-
return outtext
|
| 71 |
-
|
| 72 |
-
def get_text(self, text, hps):
|
| 73 |
-
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
|
| 74 |
-
if hps.data.add_blank:
|
| 75 |
-
text_norm = commons.intersperse(text_norm, 0)
|
| 76 |
-
text_norm = torch.LongTensor(text_norm)
|
| 77 |
-
return text_norm
|
| 78 |
-
|
| 79 |
-
def filter_oov(self, text, lang=None):
|
| 80 |
-
text = self.preprocess_char(text, lang=lang)
|
| 81 |
-
val_chars = self._symbol_to_id
|
| 82 |
-
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
|
| 83 |
-
return txt_filt
|
| 84 |
-
|
| 85 |
-
def preprocess_char(self, text, lang=None):
|
| 86 |
-
"""
|
| 87 |
-
Special treatement of characters in certain languages
|
| 88 |
-
"""
|
| 89 |
-
if lang == "ron":
|
| 90 |
-
text = text.replace("ț", "ţ")
|
| 91 |
-
print(f"{lang} (ț -> ţ): {text}")
|
| 92 |
-
return text
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def synthesize(text=None, lang=None, speed=None):
|
| 96 |
-
if speed is None:
|
| 97 |
-
speed = 1.0
|
| 98 |
-
|
| 99 |
-
lang_code = lang.split()[0].strip()
|
| 100 |
-
|
| 101 |
-
vocab_file = hf_hub_download(
|
| 102 |
-
repo_id="facebook/mms-tts",
|
| 103 |
-
filename="vocab.txt",
|
| 104 |
-
subfolder=f"models/{lang_code}",
|
| 105 |
-
)
|
| 106 |
-
config_file = hf_hub_download(
|
| 107 |
-
repo_id="facebook/mms-tts",
|
| 108 |
-
filename="config.json",
|
| 109 |
-
subfolder=f"models/{lang_code}",
|
| 110 |
-
)
|
| 111 |
-
g_pth = hf_hub_download(
|
| 112 |
-
repo_id="facebook/mms-tts",
|
| 113 |
-
filename="G_100000.pth",
|
| 114 |
-
subfolder=f"models/{lang_code}",
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
if torch.cuda.is_available():
|
| 118 |
-
device = torch.device("cuda")
|
| 119 |
-
elif (
|
| 120 |
-
hasattr(torch.backends, "mps")
|
| 121 |
-
and torch.backends.mps.is_available()
|
| 122 |
-
and torch.backends.mps.is_built()
|
| 123 |
-
):
|
| 124 |
-
device = torch.device("mps")
|
| 125 |
-
else:
|
| 126 |
-
device = torch.device("cpu")
|
| 127 |
-
|
| 128 |
-
print(f"Run inference with {device}")
|
| 129 |
-
|
| 130 |
-
assert os.path.isfile(config_file), f"{config_file} doesn't exist"
|
| 131 |
-
hps = utils.get_hparams_from_file(config_file)
|
| 132 |
-
text_mapper = TextMapper(vocab_file)
|
| 133 |
-
net_g = SynthesizerTrn(
|
| 134 |
-
len(text_mapper.symbols),
|
| 135 |
-
hps.data.filter_length // 2 + 1,
|
| 136 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 137 |
-
**hps.model,
|
| 138 |
-
)
|
| 139 |
-
net_g.to(device)
|
| 140 |
-
_ = net_g.eval()
|
| 141 |
-
|
| 142 |
-
_ = utils.load_checkpoint(g_pth, net_g, None)
|
| 143 |
-
|
| 144 |
-
is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
|
| 145 |
-
|
| 146 |
-
if is_uroman:
|
| 147 |
-
uroman_dir = "uroman"
|
| 148 |
-
assert os.path.exists(uroman_dir)
|
| 149 |
-
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
|
| 150 |
-
text = text_mapper.uromanize(text, uroman_pl)
|
| 151 |
-
|
| 152 |
-
text = text.lower()
|
| 153 |
-
text = text_mapper.filter_oov(text, lang=lang)
|
| 154 |
-
stn_tst = text_mapper.get_text(text, hps)
|
| 155 |
-
with torch.no_grad():
|
| 156 |
-
x_tst = stn_tst.unsqueeze(0).to(device)
|
| 157 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
| 158 |
-
hyp = (
|
| 159 |
-
net_g.infer(
|
| 160 |
-
x_tst,
|
| 161 |
-
x_tst_lengths,
|
| 162 |
-
noise_scale=0.667,
|
| 163 |
-
noise_scale_w=0.8,
|
| 164 |
-
length_scale=1.0 / speed,
|
| 165 |
-
)[0][0, 0]
|
| 166 |
-
.cpu()
|
| 167 |
-
.float()
|
| 168 |
-
.numpy()
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
hyp = (hyp * 32768).astype(np.int16)
|
| 172 |
-
return (hps.data.sampling_rate, hyp), text
|
| 173 |
-
|
| 174 |
|
| 175 |
TTS_EXAMPLES = [
|
| 176 |
["I am going to the store.", "eng (English)", 1.0],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
TTS_EXAMPLES = [
|
| 3 |
["I am going to the store.", "eng (English)", 1.0],
|