Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| import torch | |
| # Use a CPU-compatible base model (replace this with your actual full-precision model) | |
| base_model_id = "unsloth/gemma-2-9b" # Replace with real CPU-compatible model | |
| lora_model_id = "import gradio as gr" | |
| from huggingface_hub import InferenceClient | |
| import os | |
| # πΉ Hugging Face Credentials | |
| HF_REPO = "Futuresony/gemma2-9b-lora-alpaca" | |
| HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
| client = InferenceClient(HF_REPO, token=HF_TOKEN) | |
| def format_alpaca_prompt(user_input, system_prompt, history): | |
| """Formats input in Alpaca/LLaMA style""" | |
| history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) | |
| prompt = f"""{system_prompt} | |
| {history_str} | |
| ### Instruction: | |
| {user_input} | |
| ### Response: | |
| """ | |
| return prompt | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| formatted_prompt = format_alpaca_prompt(message, system_message, history) | |
| response = client.text_generation( | |
| formatted_prompt, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| # β Extract only the response | |
| cleaned_response = response.split("### Response:")[-1].strip() | |
| history.append((message, cleaned_response)) # β Update history with the new message and response | |
| yield cleaned_response # β Output only the answer | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch()" | |
| # Load the base model on CPU | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| torch_dtype=torch.float32, # Use float32 for CPU compatibility | |
| device_map="cpu" | |
| ) | |
| # Load the PEFT LoRA model | |
| model = PeftModel.from_pretrained(base_model, lora_model_id) | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
| # Chat function | |
| def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_msg, bot_msg in history: | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if bot_msg: | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Generate response (simulated loop for streaming output) | |
| inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cpu") | |
| outputs = model.generate( | |
| inputs, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| yield response | |
| # Gradio UI | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |