Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| import torch | |
| # Define the base and LoRA model IDs | |
| base_model_id = "unsloth/gemma-2-9b-bnb-4bit" | |
| lora_model_id = "Futuresony/future_12_10_2024" | |
| # Load the base model on CPU with float16 | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| torch_dtype=torch.float16, | |
| device_map="cpu", # Load the model on CPU, no GPU | |
| ) | |
| # Load the PEFT LoRA model | |
| model = PeftModel.from_pretrained(base_model, lora_model_id) | |
| # Tokenizer for the model | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
| # Function to respond to the user's input | |
| def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
| # Prepare the message history for chat completion | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| # Generate a response | |
| response = "" | |
| for message in model.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| # Gradio interface setup | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |